
OMITTED DETAILS FROM FROM “INVERTING THE TURÁN PROBLEM”

JOSEPH BRIGGS1 AND CHRISTOPHER COX1

Abstract. We present the elementary casework missing from the proofs of Remark 3.15 and Theorem 3.16

in the “Inverting the Turán problem” script.

We present the details missing from the proofs establishing the extremal graphs for E{P3,K3}(k) and EP3
(k).

We begin with {P3,K3}, where we are asking which graphs have the most edges subject to every star-packing

has < k edges:

Definition 1. Given a graph G, a star-packing of G is a subgraph of G which is a union of vertex-disjoint

stars.

It is quick to observe that H ⊆ G is {P3,K3}-free if and only if H is a star packing of G with possible

isolated vertices.

Theorem 2. For H = {P3,K3}, and k ≥ 3,

EH(k) =


(
k+1

2

)
− k+2

2 if k is even;(
k+1

2

)
− k+1

2 if k is odd.

Moreover, the only extremal graph for EH(k) is

Gk :=

Kk+1 \ (k−2
2 K2 ∪ P2) if k is even;

Kk+1 \ (k+1
2 K2) if k is odd.

Lemma 3. Let G be a graph on n+ t vertices. If every star-packing in G has at most n− 2 edges, then

2e(G) ≥ f(n, t) :=

n+ 2nt+ t(t− 1) if n is even;

n+ 1 + 2nt+ t(t− 1) if n is odd.

Furthermore, if equality holds, then G ' Gn−1 ∪Kt .

Proof. If n ≤ 3, the statement is straightforward, so assume n ≥ 4. We first claim that for any i ≥ 1 and

S ⊆ V with |S| = i, then S has at least t− i+ 2 common neighbors in V \ S. If this were not the case, then

there are at least |V \ S| − (t − i + 1) = n − 1 vertices in V \ S which are not connected to some v ∈ S.

Thus, we can find n− 1 edges in G that form vertex-disjoint stars with centers in S, contradicting the fact

that every star packing has at most n− 2 edges. In particular this implies that

(1) Taking i = 1, δ(G) = t+ s+ 1 for some s ≥ 0.

(2) Taking i = 2, any two vertices have at least t common neighbors.

Now, proceed by induction on t.
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When t = 0, we have δ(G) ≥ 1 by (1), so 2e(G) ≥ n+ 1n odd, with equality if and only if G ' n
2K2 when n

is even or G ' n−3
2 K2 ∪ P2 when n is odd. In either case, G ' Gn−2.

Otherwise, t ≥ 1, so diam(G) ≤ 2 by (2). In this case, choose v ∈ V with d(v) = δ(G) = t + s + 1 for

some s ≥ 0 and define N2(v) := {w ∈ G : dist(v, w) = 2} = V \ (N(v) ∪ {v}). As d(v) = t + s + 1, we

have |N2(v)| = n − s − 2. In particular, {v} × N2(v) is a star with n − s − 2 edges in G. Thus, setting

G′ := G[N(v)] it must be the case that every star packing in G′ must have at most s edges, otherwise we

could find a star packing in G with n− 1 edges.

Set n′ = s + 2 and t′ = (s + t + 1) − n′ = t − 1. As |V (G′)| = n′ + t′, and every star packing in G′ has at

most n′ − 2 edges, by induction,

2e(G′) ≥ f(n′, t′) = n′ + 2n′t′ + t′(t′ − 1) + 1n′ odd = 2st− s+ t2 + t+ 1s odd.

Additionally, we find that e[N(v), N2(v)] ≥ t(n− s− 2) as |N2(v)| = n− s− 2 and any two vertices have at

least t common neighbors. We thus obtain

2e[N(v), N2(v)] + 2e[N2(v)] = e[N(v), N2(v)] +
∑

w∈N2(v)

d(w)

≥ 1n odd, s even + t(n− s− 2) + (n− s− 2)(t+ s+ 1) (1)

= 1n odd, s even + (n− s− 2)(2t+ s+ 1),

since (n− s− 2)(2t+ s+ 1) is odd whenever both n is odd and s is even. So we calculate

2e(G) = 2e[N(v), N2(v)] + 2e[N2(v)] + 2d(v) + 2e(G′)

≥ 1n odd, s even + (n− s− 2)(2t+ s+ 1) + 2(t+ s+ 1) + f(n′, t′)

≥ 1n odd, s even + (n− s− 2)s+
(
(n− s− 2)(2t+ 1) + 2(t+ s+ 1)

)
+
(
2st− s+ t2 + t+ 1s odd

)
= 1n odd, s even − 1n odd + 1s odd + (n− s− 2)s+

(
n+ 2nt+ t(t− 1) + 1n odd

)
= 1n odd, s even − 1n odd + 1s odd + (n− s− 2)s+ f(n, t)

≥ f(n, t).

The last inequality follows from n− s− 2 = |N2(v)| ≥ 0. We have now established the claimed bound.

When 2e(G) = f(n, t), we wish to show G ' Gn−1 ∪ Kt. Certainly, all inequalities above are equalities,

so s|N2(v)| = 0. If N2(v) = ∅, then δ(G) = d(v) = |V | − 1; hence, G ' Kn+t, a contradiction as

2e(Kn+t) > f(n, t) whenever n ≥ 2.

So instead s = 0. Deduce δ(G) = d(v) = t + 1 by (1), and for any w ∈ V , |N(v) ∩ N(w)| ≥ t by (2). As

such, G′ = G[N(v)] ' Kt+1.

Equality in Equation (1), shows that all but (at most) one w ∈ N2(v) satisfy both d(w) = t + 1 and

|N(w)∩N(v)| = t, and thus has exactly 1 edge inside N2(v). There are at least |N2(v)|−1 = n−3 ≥ 1 such

w, so fix one such w1 and let w0 be its unique neighbor in N2(v). Then, w0, w1 share t neighbors, which

must therefore be some S ⊆ N(v).
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Case 1. N(w0) = S ∪ {w1} (i.e. d(w0) = t+ 1). Then every other w ∈ N2(v) \ {w0, w1} shares t neighbors

with w0, none of which are w1, so must share S.

Case 2. d(w0) > t+ 1. So the equality in Equation (1) in fact shows d(w) = t+ 1 and |N(w)∩N(v)| = t for

every w ∈ N2(v) \ {w0, w1}. If some such w did not have S as its t neighbors in N(v), then since w2 shares

t neighbors with both w1 and w0, it must be adjacent to both w0 and some w′ ∈ N2(v) ∩N(w0) (possibly

w1). So in total, d(w) ≥ t+ 2; a contradiction.

In either case, every vertex in S is connected to every vertex in G, so S is a collection of isolated vertices in G.

As such, G\S still has no star-packing with at least n−2 edges, while G\S is left with f(n,t)
2 −

(
t
2

)
−nt =

⌈
n
2

⌉
edges. Crudely ∆(G \ S) ≤ n− 2, so δ(G \ S) ≥ 1, hence G \ S ' n

2K2 (or n−3
2 K2 ∪ P2 if n is odd). Adding

S back shows G ' Gn−1 ∪Kt.

�

Proof of Theorem 2. Lower bound. As ∆(Gk) = k − 1, any single star in Gk hast at most k − 1 edges.

Additionally, as |V (Gk)| = k + 1, any star-packing in Gk with i ≥ 2 stars has at most k + 1 − i ≤ k − 1

edges. Thus, ex(Gk, {K3, P3}) < k, so E{K3,P3}(k) ≥ e(Gk) =
(
k+1

2

)
− k+1+1k even

2 .

Upper bound. Let G be a graph with ex(G, {K3, P3}) < k. Thus, every star-packing in G has at most k − 1

edges. If G has at most k vertices, then

e(G) ≤
(
k

2

)
<

(
k + 1

2

)
− k + 1 + 1k even

2
.

Thus, we may suppose G has k + 1 + t vertices for some t ≥ 0. By Lemma 3, if every star packing in G has

at most k − 1 edges, then 2e(G) ≥ f(k + 1, t). Thus,

e(G) ≤
(
k + 1 + t

2

)
− f(k + 1, t)

2
=

(
k + 1

2

)
− k + 1 + 1k even

2
.

Furthermore, if equality holds, then G ' Gk ∪Kt, so as we do not consider graphs with isolated vertices, we

must have G ' Gk. As such, Gk is the unique extremal graph for E{K3,P3}(k). �

For classifying the extremal graphs G with ex(G,P3) < k, recall the following definition used for “pendant”

graphs:

Definition 4. For fixed positive integers k, r1, r2, . . . , rs with
∑s

i=1 ri = k, define the pendant graph

K∗k(r1, . . . , rs) as follows. Take a clique on some k-vertex set {v1, . . . , vk}, called the core, and additional

vertices {w1, . . . , ws}, called the pendants. Partition {v1, . . . , vk} = W1 ∪ · · · ∪ Ws where |Wi| = ri and

connect wi to the vertices in Wi. See Figure 1.

As such, the degree sequence of K∗k(r1, . . . , rs) is (k, . . . , k︸ ︷︷ ︸
k

, r1, . . . , rs) and e(K∗k(r1, . . . , rs)) =
(
k+1

2

)
.

Lemma 5. Let k ≥ 4 and let r1, . . . , rs be positive integers with
∑s

i=1 ri = k − 1. We have

ex(K∗k−1(r1, . . . , rs), P3) ≥ k − 1, where equality holds if and only if either ri = 1 for all i, or 3 - k and

r1 = k − 1. In particular, EP3(k) ≥
(
k
2

)
.

Proof. Every vertex in the core of G := K∗k−1(r1, . . . , rs) has degree k− 1, so ex(G,P3) ≥ k− 1 is immediate

by taking any star centered at a core vertex of G.
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w1

w2

v3v1

v2

(a) ex(K∗
6 (3, 1, 1, 1), P3) ≥ 7. (b) K∗

6 (1, 1, 1, 1, 1, 1).

Figure 1. Pendant graphs.

Now, if r1 = k − 1, then G ' Kk, and it is well-known that ex(Kk, P3) = k − 1 if 3 - k. If (r1, . . . , rs) =

(1, . . . , 1), then let U denote the core of G. Now let H ⊆ G be any P3-free subgraph, so H is a vertex-disjoint

union of triangles, stars and isolated vertices. Now, no triangle T in H can contain a pendant vertex, so

each V (T ) ⊆ U , and every star contains at most one; hence |V (S)∩U | ≥ |V (S)| − 1 for each star S. Hence,

splitting up H into components:

e(H) =
∑
T⊆H

T triangle

e(T ) +
∑
S⊆H
S star

e(S)

=
∑
T⊆H

T triangle

|V (T )|+
∑
S⊆H
S star

(
|V (S)| − 1

)
≤

∑
T⊆H

T triangle

|V (T ) ∩ U |+
∑
S⊆H
S star

|V (S) ∩ U | ≤ |U | = k − 1.

As such, ex(G,P3) = k − 1. In particular, EP3
(k) ≥ e(K∗k−1(1, . . . , 1)) =

(
k
2

)
.

We now wish to show that if G := K∗k−1(r1, . . . , rs) where (r1, . . . , rs) is niether (k − 1) nor (1, . . . , 1), then

ex(G,P3) ≥ k. Suppose that r1 ≥ · · · ≥ rs, so r1, s ≥ 2. Let w1, w2 be the corresponding pendant vertices

with degrees r1, r2, respectively. Let v1, v2 ∈ U be adjacent to w1 and let v3 ∈ U be adjacent to w2 (so

v1, v2, v3 are distinct). Consider the graph H ⊆ G which consists of the triangle w1, v1, v2 and the largest

star centered at v3 which does not include v1, v2 (see Figure 1a). As d(v3) = k − 1, H is the vertex-disjoint

union of a triangle and a star with k − 3 edges. In particular, H is P3-free, so ex(G,P3) ≥ e(H) = k. �

Before determining EP3(k) exactly and classifying all extremal graphs, it is necessary consider a small case.

Proposition 6. ex(G,P3) = 2 if and only if G ∈ {P3, C4}. Hence, EP3
(3) = 4 =

(
3
2

)
+ 1.

Proof. Certainly ex(P3, P3) = ex(C4, P3) = 2.

If ex(G,P3) = 2, then every set of 3 edges in G forms a copy of P3. Thus, ∆(G) ≤ 2, G is connected and

|V (G)| ≥ 4, so G is a cycle or a path. Both Pn−1 and Cn contain a copy of P1 ∪ P2, which is P3-free, for

n ≥ 5, so we must have |V (G)| = 4. As such G ∈ {P3, C4}. Thus, EP3
(3) = 4. �

With this out of the way, we can now completely determine EP3
(k). Unfortunately, there is a fair amount

of case-work involved in the proof of this theorem in order to establish the base case for an induction. For
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this, we turn to NAUTY to do an exhaustive search subject to the parameters which we will establish in the

following proof. As is mentioned in the proof, details about this case check can be found in Appendix A.

Theorem 7. For k ≥ 3, if G is a graph with ex(G,P3) < k, then e(G) ≤
(
k
2

)
+ 1k=3. Furthermore, we have

equality if and only if one of the following holds:

• k = 3 and G ' C4,

• k = 4 and G ' K2,3,

• k ≥ 4 and G ' K∗k−1(1, 1, . . . , 1), or

• k ≥ 4, 3 - k and G ' Kk.

Hence, EP3
(k) =

(
k
2

)
+ 1k=3 for k ≥ 3.

Proof. We first note that ex(K2,3, P3) = 3 and e(K2,3) = 6 =
(

4
2

)
. Thus, along with Lemma 5 and Propo-

sition 6, all lower bounds have been established. Additionally, Proposition 6 establishes the theorem when

k = 3, so we will suppose k ≥ 4 for the remainder of the proof. We also note that trivially, E1(P3) = 0 =
(

1
2

)
and E2(P3) = 1 =

(
2
2

)
.

As such, let G be a graph with ex(G,P3) < k with e(G) ≥
(
k
2

)
and proceed by strong induction on k. Note

that ex(G,P3) ≥ ∆ := ∆(G), so ∆ ≤ k − 1.

Firstly, suppose G contains a triangle T = xyz. If H ⊆ G[V \ T ] =: G′ is P3-free, then H ∪ T is also P3-free,

so ex(G′, P3) < k − 3. Thus, by induction, e(G′) ≤
(
k−3

2

)
+ 1k−3=3. Now, as ∆ ≤ k − 1, x, y, z all have at

most k − 3 neighbors outside T , so

e(G) ≤ e[V \ T ] + 3(k − 3) + 3 ≤
(
k − 3

2

)
+ 1k−3=3 + 3k − 6 =

(
k

2

)
+ 1k−3=3,

Using these facts, for 4 ≤ k ≤ 6, we can run an exhaustive search using NAUTY, the details of which

can be read in Appendix A. Thus, we assume k ≥ 7, so e(G) ≤
(
k
2

)
. If equality holds, then all of x, y, z

must have exactly k − 3 neighbors outside of T and G′ must be one of the claimed extremal graphs, so

G′ ' K∗k−4(1, . . . , 1), or G′ ' Kk−3 and 3 - k, or G′ ' K2,3 and k − 3 = 4, possibly with isolated vertices.

We first consider the case where G′ ' K2,3, possibly with isolated vertices. In fact, we may suppose that for

every triangle T ′ ⊆ G, we have G[V \T ′] ' K2,3, possibly with isolated vertices, or else we may proceed as in

the remaining cases. Let the vertices of the K2,3 in G′ have parts A,B where |A| = 2 and |B| = 3. We first

note that each v ∈ T must have all remaining k − 3 = 4 edges to A ∪ B, or else there is a K1,5 centered at

v which is disjoint from some copy of P2 in A ∪B, yielding ex(G,P3) ≥ 7; a contradiction. In particular G′

has no isolated vertices. Additionally, all vertices in T must be connected to at least one vertex in A; thus,

by pigeonhole, there are two vertices in T adjacent to the same vertex of A, say y, z ∼ a. Taking T ′ = yza

shows that G[V \ T ′] ' K2,3. As such, x must be adjacent to every vertex in B and also adjacent to a. In

particular, xab is a triangle for b ∈ B, so G′′ = G[V \ xa1b] ' K2,3. However, y ∼ z and dG′(y), dG′(z) ≥ 2,

which is impossible.

Next, suppose that G′ ' K∗k−4(1, . . . , 1), possibly with isolated vertices, and let U denote the core of G′.

If x is not adjacent to some vertex of U , then x has at least (k − 3) − (k − 5) = 2 neighbors outside of

T ∪ U , denote two of these neighbors by a, b. As |U | = k − 4 ≥ 3, there must be some u ∈ U which is not

adjacent to a, b, so u is the center of a (k − 4)-edge star in G′ which does not include a, b. Thus, consider

the graph H ⊆ G consisting of this star centered at u along with the star {xy, xz, xa, xb}. H is P3-free, so
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ex(G,P3) ≥ e(H) = k; a contradiction. Hence, by symmetry, x, y, z are adjacent to all vertices in U . Thus,

G is a pendant graph with core T ∪ U . Thus, G is determined to be K∗k−1(1, . . . , 1) by Lemma 5.

Finally, suppose 3 - k and G′ ' Kk−3, possibly with isolated vertices, and write S ⊆ V \ T for the vertex

set of this Kk−3. We notice that if x has at most one neighbor in S, then there is a star centered at x

with at least (k − 1) − 1 = k − 2 ≥ 5 edges in G which is disjoint from S. Thus, letting H consist of a

(k − 4)-edge star in G′ along with this star centered at x gives ex(G,P3) ≥ e(H) ≥ k + 1; a contradiction.

Thus, by symmetry, all of x, y, z each have at least two neighbors in S. Now, suppose that there is some

a ∈ V \ (T ∪ S) that is adjacent to x. If k ≡ 2 (mod 3), then as y has at least two neighbors in S, then we

can partition S ∪ {y} into (k − 3) + 1 = k − 2 vertex-disjoint triangles. Letting H consist of these triangles

along with the star {xz, xa} yields a P3-free subgraph of G with k edges; a contradiction. Thus, suppose

k ≡ 1 (mod 3). Either y and z share a common neighbor in S or they each have two distinct neighbors in

S. In either case, we can partition S ∪ {y, z} into (k − 3) + 2 = k − 1 vertex-disjoint triangles, so letting

H consist of these triangles along with the edge xa yields a P3-free subgraph of G with k edges; another

contradiction. Hence, by symmetry, x, y, z have no neighbors outside of S ∪ T , so, in fact, G ' Kk.

After all of this, we have established the theorem if G contains a triangle, so we may suppose that G is

triangle-free. As such, if xy ∈ E(G), then N(x) ∩ N(y) = ∅. Taking maximal stars with centers x and y

(except for the edge xy), yields a P3-free subgraph of G, so k > ex(G,P3) ≥ (d(x) − 1) + (d(y) − 1), so

d(x) + d(y) ≤ k + 1 for every edge xy.

If there is some edge xy with d(x)+d(y) ≤ k, then setting G′ := G\{x, y} has e(G′) ≥
(
k
2

)
− (k−1) =

(
k−1

2

)
.

Additionally, adding the edge xy to any P3-free subgraph of G′ shows that ex(G′, P3) ≤ ex(G,P3)−1 < k−1.

Thus, by the induction and the fact that G′ is triangle-free, we must have k ∈ {4, 5} and e(G′) =
(
k
2

)
. Again,

these cases are established by an exhaustive search whose details are presented in Appendix A.

Hence, we may suppose d(x) + d(y) = k + 1 for every xy ∈ E(G). Fix x and suppose first that d := d(x) 6=
k+1

2 . Letting C denote the connected component of G containing x, we can partition C = A ∪ B where

A = {u : d(u) = d} and B = {u : d(u) = k + 1 − d}. As d(u) + d(v) = k + 1 for every uv ∈ E(G) and

d 6= k+1
2 , G[C] is a bipartite graph with parts A,B. Now, for any u ∈ A and v ∈ B, by considering stars

centered at u and v (except for the edge uv if it exists), we find

k > ex(G,P3) ≥ ex(G[C], P3) + ex(G[V \ C], P3) ≥ |N(u) \ {v}|+ |N(v) \ {u}| = k + 1− 2 · 1uv∈E(G).

From this, we immediately find that G[V \ C] is empty, and as the above holds for any u, v, we know that

G[C] is a complete bipartite graph. Furthermore, since C is a connected component of G and we supposed

G has no isolated vertices, we have G ' Kd,k+1−d. Thus e(G) = d(k + 1 − d) ≤
(
k
2

)
. However, we already

know that e(G) ≥
(
k
2

)
by assumption, so d(k + 1− d) =

(
k
2

)
. As k ≥ 4, the only way for this to happen is if

k = 4 and d ∈ {2, 3}. Thus, G ' K2,3.

Otherwise, G is d := (k+1
2 )-regular. Fix x ∈ V and set G′ := G − (N(x) ∪ {x}). Thus, it is clear that

ex(G′, P3) + d ≤ ex(G,P3) < k, so ex(G′, P3) < k − d = k−1
2 . Setting k′ := k−1

2 , we have that e(G′) ≤(
k′

2

)
+ 1k′=3 by induction. Furthermore, as G is triangle-free, N(x) spans no edges, so(

k′

2

)
+ 1k′=3 ≥ e(G′) = e(G)− d2 ≥

(
k

2

)
− d2,

so

d2 ≥
(
k

2

)
−
(
k′

2

)
− 1k′=3 =

3

8
(k2 − 1)− 1k′=3
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As k must be odd and k ≥ 4, this is only possible if k = 5. Setting k = 5, all above inequalities become

equalities, so we get d = 3 and e(G) =
(

5
2

)
. Thus, G is a 3-regular graph on 10 edges; an impossibility. �

Appendix A. Omitted details of Theorem 7

We present the details behind the case check in Theorem 7. To do this case check, we employ NAUTY after

making reductions. The first necessary reduction is that we reduce our search by only considering connected

graphs. Suppose that the graphs claimed in the theorem are the only connected extremal graphs for EP3
(k),

then for k ≥ 4, let G be a graph with ex(G,P3) < k − 1 and e(G) ≥
(
k
2

)
. Let I consist of one vertex from

each connected component of G, so ex(CI(G), P3) ≤ ex(G,P3) by Corollary 3.4 in the main paper. As such,

CI(G) ∈ {K2,3,K
∗
k−1(1, . . . , 1),Kk}. If G was not connected, then it must be that CI(G) ' K∗k−1(1, . . . , 1)

as Kk and K2,3 do not have cut vertices. Let G′ be a copy of K∗k−1(1, . . . , 1) with a single pendant vertex

removed, then it must be the case that G ' G′ ∪ P1. However, it is quick to verify that ex(G′ ∪ P1, P3) ≥ k
by taking this isolated edge along with a star with k − 1 edges centered at a vertex of the core of G′; a

contradiction.

Thus, if we can find all connected graphs G with ex(G,P3) ≤ k− 1 and e(G) ≥
(
k
2

)
, we will have established

the theorem. We now outline the parameters of the search, which were deduced in the proof of the theorem.

If G has a triangle:

• k = 4: e(G) =
(

4
2

)
, ∆(G) ≤ 3.

• k = 5: e(G) =
(

5
2

)
, ∆(G) ≤ 4.

• k = 6: e(G) ∈
{(

6
2

)
,
(

6
2

)
+ 1
}

, ∆(G) ≤ 5.

If G is triangle-free:

• k = 4: e(G) =
(

4
2

)
, ∆(G) ≤ 3.

• k = 5: e(G) =
(

5
2

)
, ∆(G) ≤ 4.

As the conditions for k ∈ {4, 5} are the same whether or not G has a triangle, it suffices to search over all

connected graphs satisfying the indicated conditions.

For the case of k = 6, it is necessary to provide one additional reduction in order to reduce the number of

graphs which must be considered. Recall that in the proof of the theorem, we have a triangle T = xyz and

G′ = G[V \ T ] has ex(G′, P3) < k − 3. In the case of k = 6, this means that ex(G′, P3) ≤ 2. Furthermore,

as e(G) ≥
(

6
2

)
and ∆(G) ≤ 5, we see that e(G′) ≥ 3, so G′ is either a P3 or C4, possibly with isolated

vertices; let H be this copy of P3 or C4 in G′. Now, if any of x, y, z, say x, has two neighbors outside

of T ∪ H, say a, b, then the 2P1 in H along with the star {xy, xz, xa, xb} forms a P3-free subgraph of G

with 6 edges; a contradiction. Thus, each of x, y, z has at most one neighbor outside of T ∪H. Therefore,

|V (G)| ≤ |V (H)|+ |T |+ 3 = 10. Furthermore, in order to have e(G) ≥
(

6
2

)
, it is necessary for one of x, y, z

to have degree 5; thus, ∆(G) = 5. As such, when considering k = 6, it is enough to restrict to graphs with

at most 10 vertices.

See https://github.com/cocox-math/inverse-turan for the SAGE worksheet containing this search.

https://github.com/cocox-math/inverse-turan
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