OMITTED DETAILS FROM FROM “INVERTING THE TURAN PROBLEM”

JOSEPH BRIGGS! AND CHRISTOPHER COX!

ABSTRACT. We present the elementary casework missing from the proofs of Remark 3.15 and Theorem 3.16

in the “Inverting the Turan problem” script.

We present the details missing from the proofs establishing the extremal graphs for & p, ,3(k) and Ep, (k).
We begin with {Ps, K3}, where we are asking which graphs have the most edges subject to every star-packing
has < k edges:

Definition 1. Given a graph G, a star-packing of G is a subgraph of G which is a union of vertex-disjoint

stars.

It is quick to observe that H C G is {Ps, K3}-free if and only if H is a star packing of G with possible

isolated vertices.
Theorem 2. For H = {Ps3, K3}, and k > 3,

) — = if k is even;
("IN = B2 if ks odd.
Moreover, the only extremal graph for (k) is

Kpv1 )\ (%Kg UPy) ifk is even;
K1\ (B KS) if k is odd.

2

G =

Lemma 3. Let G be a graph on n + t vertices. If every star-packing in G has at most n — 2 edges, then

n+2nt+tt—1 if n is even;
2e(GQ) > f(n,t) = ( ) !
n+14+2nt+t(t—1) ifn is odd.

Furthermore, if equality holds, then G ~ G,_1 UK, .

Proof. If n < 3, the statement is straightforward, so assume n > 4. We first claim that for any ¢ > 1 and
S C V with |S| =i, then S has at least t — i + 2 common neighbors in V'\ S. If this were not the case, then
there are at least [V \ S| — (¢t =i+ 1) = n — 1 vertices in V' \ S which are not connected to some v € S.
Thus, we can find n — 1 edges in G that form vertex-disjoint stars with centers in S, contradicting the fact

that every star packing has at most n — 2 edges. In particular this implies that

(1) Taking ¢ =1, 6(G) =t + s+ 1 for some s > 0.

(2) Taking ¢ = 2, any two vertices have at least ¢ common neighbors.
Now, proceed by induction on ¢.
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When t = 0, we have §(G) > 1 by , 50 2e(G) > n + 1, oda, with equality if and only if G ~ Z K5 when n
is even or G ~ "T_3K2 U P, when n is odd. In either case, G ~ Gp_s.

Otherwise, ¢t > 1, so diam(G) < 2 by (2). In this case, choose v € V with d(v) = §(G) = t+ s+ 1 for
some s > 0 and define N2(v) := {w € G : dist(v,w) = 2} = V\ (N(v) U {v}). Asd(v) =t+s+ 1, we
have |[N?(v)| = n — s — 2. In particular, {v} x N?(v) is a star with n — s — 2 edges in G. Thus, setting
G’ := G[N(v)] it must be the case that every star packing in G’ must have at most s edges, otherwise we

could find a star packing in G with n — 1 edges.
Setn’ =s+2andt/ = (s+t+1)—n'=t—1. As |[V(G")| = n’ + ¢, and every star packing in G’ has at
most n’ — 2 edges, by induction,

2e(G) > f(n', ) =n' + 20/t +t'(t' — 1) + 1, gqq = 25t — s + 12 + 1+ 14 oda-

Additionally, we find that e[N(v), N2(v)] > t(n — s —2) as [N?(v)| = n — s — 2 and any two vertices have at

least ¢ common neighbors. We thus obtain

2¢[N(v), N?(v)] 4 2e[N?(v)] = e[N(v), N*(v)] + Z d(w)
wEN?2(v)

>1nodd, seven FE(n—5—2)+(n—s—=2)(t+s+1) (1)
:]-nodd,scvcn+(n7572)(2t+5+l),

since (n — s — 2)(2t + s + 1) is odd whenever both n is odd and s is even. So we calculate

2¢(G) = 2¢[N(v), N%(v)] + 2¢[N?(v)] + 2d(v) + 2¢(G")
> 1 0dd, seven + (R —8—2)(2t+s+ 1) +2(t+s+ 1)+ f(n',t)
> 1, 0dd, seven + (R —5—=2)s+ (n—s—2)2t+1)+2(t+s+1)) + (2st — s+ >+t + 1, oaa)
=15 0dd, s even — L odd + Ls oad + (R — s = 2)s + (n+ 2nt + t(t — 1) + 1, oaa)
=1, odd, s even — 1n odd + Ls oda + (0 — s — 2)s + f(n,t)
> f(n,t).

The last inequality follows from n — s — 2 = |N2(v)| > 0. We have now established the claimed bound.

When 2¢(G) = f(n,t), we wish to show G ~ G,,_; U K;. Certainly, all inequalities above are equalities,
so s|N2(v)| = 0. If N?(v) = @, then §(G) = d(v) = |V| — 1; hence, G ~ K, ., a contradiction as
2e(Kp1t) > f(n,t) whenever n > 2.

So instead s = 0. Deduce 6(G) = d(v) = ¢t + 1 by (), and for any w € V, [N(v) N N(w)| > ¢ by (). As
such, G’ = G[N(v)] =~ Kt41.

Equality in Equation (1), shows that all but (at most) one w € NZ2(v) satisfy both d(w) = t + 1 and
|N(w)N N (v)| = t, and thus has exactly 1 edge inside N?(v). There are at least |[N?(v)| -1 =n—3 > 1 such

w, so fix one such w; and let wy be its unique neighbor in N2(v). Then, wy,w; share t neighbors, which
must therefore be some S C N(v).
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Case 1. N(wg) = SU {w1} (i.e. d(wg) =t +1). Then every other w € N?(v) \ {wo,w;} shares ¢ neighbors

with wg, none of which are wy, so must share S.

Case 2. d(wg) > t+ 1. So the equality in Equation (1)) in fact shows d(w) =t+1 and |[N(w) N N(v)| =t for
every w € N2(v) \ {wo, w; }. If some such w did not have S as its ¢ neighbors in N(v), then since wy shares
t neighbors with both w; and wy, it must be adjacent to both wy and some w’ € N?(v) N N(wp) (possibly
wy). So in total, d(w) > t 4 2; a contradiction.

In either case, every vertex in S is connected to every vertex in G, so S is a collection of isolated vertices in G.
As such, G\ S still has no star-packing with at least n—2 edges, while G'\ S is left with @ — (;) —nt = (%1
edges. Crudely A(G\ S) <n—2,506(G\S) > 1, hence G\ S~ 2K, (or 252K, U P, if n is odd). Adding
S back shows G ~ G,,_1 U K.

O

Proof of Theorem[3 Lower bound. As A(Gy) = k — 1, any single star in Gy hast at most k — 1 edges.
Additionally, as |[V(Gy)| = k + 1, any star-packing in Gy with ¢ > 2 stars has at most k+1 —¢ < k —1
edges. Thus, ex(Gg, {K3, P3}) < k, s0 g, pyy (k) > e(Gy) = (k—gl) _ %

Upper bound. Let G be a graph with ex(G, {K3, P3s}) < k. Thus, every star-packing in G has at most k — 1

edges. If G has at most k vertices, then

k k+1 k+1+1k:even
< -

Thus, we may suppose G has k + 1 + ¢ vertices for some ¢ > 0. By Lemma [3] if every star packing in G has

at most k — 1 edges, then 2¢(G) > f(k+ 1,t). Thus,

k+1+1 k+1,t k+1 k+ 14 1k even
e(G) < + 1+ _f(+,): +1) ++kee.
2 2 2 2
Furthermore, if equality holds, then G ~ G}, U K, so as we do not consider graphs with isolated vertices, we

must have G ~ Gy. As such, G}, is the unique extremal graph for &k, p,3 (k). a

For classifying the extremal graphs G with ex(G, P3) < k, recall the following definition used for “pendant”
graphs:

Definition 4. For fized positive integers k,r1,ra,...,7s with > . ,r; = k, define the pendant graph
Ki(ri,...,7s) as follows. Take a clique on some k-vertex set {vy,...,v;}, called the core, and additional
vertices {wi,...,ws}, called the pendants. Partition {vy,...,vx} = Wy U--- U W, where |W;| = r; and

connect w; to the vertices in W;. See Figure 1]

As such, the degree sequence of Kj(r1,...,7s) is (k,...,k,m1,...,7s) and e(Kj(r1,...,75)) = (k;rl).
———

k

Lemma 5. Let k > 4 and let r1,...,75 be positive integers with Zle ri =k—1. We have
ex(K;_y(r1,...,7s), P3) > k — 1, where equality holds if and only if either r; = 1 for all i, or 3t k and
r1 =k —1. In particular, Ep, (k) > (g)

Proof. Every vertex in the core of G := K};_,(r1,...,7s) has degree k —1, so ex(G, P3) > k — 1 is immediate

by taking any star centered at a core vertex of G.
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w1
v3
(%1} o [ L
w2
(A) eX(Kg(37 17 17 1)7 PS) > 7. (B) Kg(lv 17 17 17 17 1)

FIGURE 1. Pendant graphs.

Now, if 4 = k — 1, then G ~ K}, and it is well-known that ex(Ky, Ps) = k—1if 3t k. If (rq,...,7rs) =
(1,...,1), then let U denote the core of G. Now let H C G be any Ps-free subgraph, so H is a vertex-disjoint
union of triangles, stars and isolated vertices. Now, no triangle 7" in H can contain a pendant vertex, so
each V(T) C U, and every star contains at most one; hence |V (S)NU| > |[V(S)| — 1 for each star S. Hence,

splitting up H into components:

e(H)= > e+ Y elS)

TCH SCH
T triangle S star
= > VDI+ > (VSI-1)
TCH SCH
T triangle S star
< D VmnU+ ) VS)NUI < U=k - 1.
TCH SCH
T triangle S star

As such, ex(G, P3) = k — 1. In particular, Ep, (k) > e(K;_,(1,...,1)) = (g)

We now wish to show that if G := K}_(r1,...,rs) where (rq,...,rs) is niether (k — 1) nor (1,...,1), then
ex(G, P3) > k. Suppose that vy > -+ > rg, so r1,s > 2. Let wy, ws be the corresponding pendant vertices
with degrees r1,r9, respectively. Let v1,v2 € U be adjacent to w; and let vs € U be adjacent to wy (so
vy, Ug, v3 are distinct). Consider the graph H C G which consists of the triangle wy,v1,ve and the largest
star centered at vs which does not include vy, vs (see Figure . As d(v3) = k — 1, H is the vertex-disjoint
union of a triangle and a star with k£ — 3 edges. In particular, H is Ps-free, so ex(G, P3) > e(H) = k. O

Before determining Ep, (k) exactly and classifying all extremal graphs, it is necessary consider a small case.

Proposition 6. ex(G, P5) = 2 if and only if G € {Ps,C4}. Hence, Ep,(3) =4 = (3) + 1.

Proof. Certainly ex(P3, P3) = ex(Cy, P3) = 2.

If ex(G, P3) = 2, then every set of 3 edges in G forms a copy of P3. Thus, A(G) < 2, G is connected and
|[V(G)| > 4, so G is a cycle or a path. Both P,_; and C,, contain a copy of P; U P, which is Ps-free, for
n > 5, so we must have |V(G)| = 4. As such G € {P5,C4}. Thus, Ep,(3) = 4. O

With this out of the way, we can now completely determine Ep, (k). Unfortunately, there is a fair amount

of case-work involved in the proof of this theorem in order to establish the base case for an induction. For
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this, we turn to NAUTY to do an exhaustive search subject to the parameters which we will establish in the

following proof. As is mentioned in the proof, details about this case check can be found in Appendix [A]l

Theorem 7. For k > 3, if G is a graph with ex(G, P3) < k, then e(G) < (g) + 1y—3. Furthermore, we have
equality if and only if one of the following holds:

o k=3 and G ~ (4,

o k=4 and G ~ Ky 3,

o k>4 and G~ K; ((1,1,...,1), or
e k>4,3tk and G ~ K.

Hence, Ep, (k) = (I;) + 1g=3 for k > 3.

Proof. We first note that ex(Ks 3, P3) = 3 and e(K33) =6 = (;) Thus, along with Lemma |5| and Propo-
sition [6] all lower bounds have been established. Additionally, Proposition [6] establishes the theorem when
k = 3, so we will suppose k > 4 for the remainder of the proof. We also note that trivially, & (P3) =0 = (;)
and & (Ps) =1 = (3).

As such, let G be a graph with ex(G, P;) < k with e(G) > (g) and proceed by strong induction on k. Note
that ex(G, P3) > A := A(G),s0 A <k —1.

Firstly, suppose G contains a triangle T'= xyz. If H C G[V \T] =: G’ is Ps-free, then H UT is also Ps-free,
so ex(G', P3) < k — 3. Thus, by induction, e(G’) < (k;‘g) +1,_3-3. Now, as A < k — 1, z,y, z all have at
most k£ — 3 neighbors outside T, so

e(G) <e[V\T]+3(k—3)+3< <k23>+1k—3=3+3]€—6: <];

> +1p_3=3,

Using these facts, for 4 < k < 6, we can run an exhaustive search using NAUTY, the details of which
can be read in Appendix |Al Thus, we assume k > 7, so e(G) < (g) If equality holds, then all of x,y, 2
must have exactly & — 3 neighbors outside of T and G’ must be one of the claimed extremal graphs, so

G ~K; ,1,...,1),or G~ Kj_3and 31k, or G’ ~ K3 and k — 3 = 4, possibly with isolated vertices.

We first consider the case where G’ ~ K 3, possibly with isolated vertices. In fact, we may suppose that for
every triangle 77 C G, we have G[V \T"] ~ K3 3, possibly with isolated vertices, or else we may proceed as in
the remaining cases. Let the vertices of the K5 3 in G’ have parts A, B where |A| =2 and |B| = 3. We first
note that each v € T' must have all remaining k — 3 = 4 edges to AU B, or else there is a K 5 centered at
v which is disjoint from some copy of P, in AU B, yielding ex(G, P3) > 7; a contradiction. In particular G’
has no isolated vertices. Additionally, all vertices in T' must be connected to at least one vertex in A; thus,
by pigeonhole, there are two vertices in T' adjacent to the same vertex of A, say y,z ~ a. Taking T' = yza
shows that G[V \ T"] ~ Ky 3. As such, x must be adjacent to every vertex in B and also adjacent to a. In
particular, zab is a triangle for b € B, so G” = G[V \ za1b] ~ K3 3. However, y ~ z and dg/ (), de (2) > 2,

which is impossible.

Next, suppose that G’ ~ K;_,(1,...,1), possibly with isolated vertices, and let U denote the core of G'.
If x is not adjacent to some vertex of U, then = has at least (k — 3) — (k — 5) = 2 neighbors outside of
T U U, denote two of these neighbors by a,b. As |[U| = k —4 > 3, there must be some u € U which is not
adjacent to a,b, so u is the center of a (k — 4)-edge star in G’ which does not include a,b. Thus, consider

the graph H C G cousisting of this star centered at w along with the star {zy, zz,za,xb}. H is Ps-free, so
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ex(G, P;) > e(H) = k; a contradiction. Hence, by symmetry, x,y, z are adjacent to all vertices in U. Thus,
G is a pendant graph with core T'U U. Thus, G is determined to be K}_,(1,...,1) by Lemma

Finally, suppose 3 1 k and G’ ~ K}_3, possibly with isolated vertices, and write S C V \ T for the vertex
set of this Ki_3. We notice that if £ has at most one neighbor in S, then there is a star centered at x
with at least (k —1) —1 = k—2 > 5 edges in G which is disjoint from S. Thus, letting H consist of a
(k — 4)-edge star in G’ along with this star centered at x gives ex(G, P3) > e(H) > k + 1; a contradiction.
Thus, by symmetry, all of z,y, z each have at least two neighbors in S. Now, suppose that there is some
a €V \(TUS) that is adjacent to z. If k =2 (mod 3), then as y has at least two neighbors in S, then we
can partition S U {y} into (kK — 3) + 1 = k — 2 vertex-disjoint triangles. Letting H consist of these triangles
along with the star {zz,za} yields a Ps-free subgraph of G with k edges; a contradiction. Thus, suppose
k=1 (mod 3). Either y and z share a common neighbor in S or they each have two distinct neighbors in
S. In either case, we can partition S U {y,z} into (k —3) + 2 = k — 1 vertex-disjoint triangles, so letting
H consist of these triangles along with the edge za yields a Ps-free subgraph of G with k edges; another

contradiction. Hence, by symmetry, z,y, z have no neighbors outside of S U T, so, in fact, G ~ K.

After all of this, we have established the theorem if G contains a triangle, so we may suppose that G is
triangle-free. As such, if zy € E(G), then N(z) N N(y) = @. Taking maximal stars with centers = and y
(except for the edge xy), yields a Ps-free subgraph of G, so k > ex(G, P3) > (d(z) — 1) + (d(y) — 1), so
d(z) 4+ d(y) < k+ 1 for every edge zy.

If there is some edge zy with d(x)+d(y) < k, then setting G’ := G\ {z, y} has e(G’) > (g) —(k—1)= (kgl).
Additionally, adding the edge zy to any Ps-free subgraph of G’ shows that ex(G’, P3) < ex(G, P3)—1 < k—1.
Thus, by the induction and the fact that G’ is triangle-free, we must have k € {4,5} and e(G’) = (’2“) Again,
these cases are established by an exhaustive search whose details are presented in Appendix [A]

Hence, we may suppose d(z) + d(y) = k + 1 for every xy € E(G). Fix & and suppose first that d := d(x) #
k—;rl. Letting C denote the connected component of G containing x, we can partition C' = A U B where
A={u:du) =d}and B={u:du) =k+1—-d}. Asd(u)+dw) =k+1 for every wv € E(G) and
d # %, G[C] is a bipartite graph with parts A, B. Now, for any v € A and v € B, by considering stars

centered at u and v (except for the edge wv if it exists), we find
k> ex(G, P3) > ex(G[C], Ps) + ex(G[V\ C], P3) > [N(u) \ {v}| + [N(0) \ {u}| =k +1 =2 Lupep(o):

From this, we immediately find that G[V \ C] is empty, and as the above holds for any u, v, we know that
G[C] is a complete bipartite graph. Furthermore, since C' is a connected component of G' and we supposed
G has no isolated vertices, we have G ~ Kgj+1-4. Thus e(G) =d(k+1—d) < (’2“) However, we already
know that e(G) > (g) by assumption, so d(k+1—d) = (g) As k > 4, the only way for this to happen is if
k=4 and d € {2,3}. Thus, G ~ K 3.

Otherwise, G is d := (&f2)-regular. Fix z € V and set G’ := G — (N(z) U {z}). Thus, it is clear that
ex(G',Ps) +d < ex(G, P3) < k, so ex(G',P3) < k—d = 551 Setting k' := %71, we have that e(G') <
(’;/) + 1x/—3 by induction. Furthermore, as G is triangle-free, N (z) spans no edges, so

(’;) +1p=z > e(G') = e(G) — d* > (’;) —d?,

k k' 3
= <2> - (2) ~ s = g — 1) — s

SO
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As k must be odd and k > 4, this is only possible if k¥ = 5. Setting k = 5, all above inequalities become
equalities, so we get d = 3 and e(G) = (g) Thus, G is a 3-regular graph on 10 edges; an impossibility. [

APPENDIX A. OMITTED DETAILS OF THEOREM [7]

We present the details behind the case check in Theorem [7] To do this case check, we employ NAUTY after
making reductions. The first necessary reduction is that we reduce our search by only considering connected
graphs. Suppose that the graphs claimed in the theorem are the only connected extremal graphs for Ep, (k),
then for k > 4, let G be a graph with ex(G, P3) < k — 1 and e(G) > (g) Let I consist of one vertex from
each connected component of G, so ex(C(G), P3) < ex(G, P3) by Corollary 3.4 in the main paper. As such,
Ci(G) e {Ka3,K;_,(1,...,1), Kx}. If G was not connected, then it must be that C;(G) ~ K;_,(1,...,1)
as K and Ky 3 do not have cut vertices. Let G’ be a copy of K;_,(1,...,1) with a single pendant vertex
removed, then it must be the case that G ~ G’ U P;. However, it is quick to verify that ex(G' U Py, P3) > k
by taking this isolated edge along with a star with k¥ — 1 edges centered at a vertex of the core of G’; a

contradiction.

Thus, if we can find all connected graphs G with ex(G, P3) < k—1 and e(G) > (’2“), we will have established

the theorem. We now outline the parameters of the search, which were deduced in the proof of the theorem.

If G has a triangle:

e k=4:¢(G)=(3), AG) <3
o k=5:¢(G) = (3), AG) < 4.
o k=6 ¢(G) € {(3) () +1} AG) <5

As the conditions for k € {4,5} are the same whether or not G has a triangle, it suffices to search over all

connected graphs satisfying the indicated conditions.

For the case of k = 6, it is necessary to provide one additional reduction in order to reduce the number of
graphs which must be considered. Recall that in the proof of the theorem, we have a triangle T" = zyz and
G’ = GV \ T] has ex(G', P3) < k — 3. In the case of k = 6, this means that ex(G’, P3) < 2. Furthermore,
as e(G) > (g) and A(G) < 5, we see that e(G’) > 3, so G’ is either a P; or C4, possibly with isolated
vertices; let H be this copy of P3 or Cy in G’. Now, if any of z,y, z, say z, has two neighbors outside
of TU H, say a,b, then the 2P; in H along with the star {zy,xz,za,xb} forms a Ps-free subgraph of G
with 6 edges; a contradiction. Thus, each of z,y, z has at most one neighbor outside of T'U H. Therefore,
[V(G)| < |V(H)| +|T| + 3 = 10. Furthermore, in order to have e(G) > (g), it is necessary for one of x,y, z
to have degree 5; thus, A(G) = 5. As such, when considering k = 6, it is enough to restrict to graphs with

at most 10 vertices.

See https://github.com/cocox-math/inverse-turan for the SAGE worksheet containing this search.
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