

This document is from <https://mathematicaster.org/teaching/advgraphs2025/hw/ws2.pdf>

Problem 1. Recall that Chebyshev's inequality implied that if X is a non-negative random variable, then $\mathbf{Pr}[X = 0] \leq \frac{\mathbf{Var} X}{(\mathbb{E} X)^2}$. Improve this inequality slightly to

$$\mathbf{Pr}[X = 0] \leq \frac{\mathbf{Var} X}{\mathbb{E}(X^2)}.$$

Hint: Cauchy–Schwarz states that $(\mathbb{E} XY)^2 \leq \mathbb{E} X^2 \cdot \mathbb{E} Y^2$.

Problem 2. Fix $\epsilon > 0$. Say that a triangle is *almost-equilateral* if all angles in the triangle are within $(60 \pm \epsilon)^\circ$. Prove that there is some absolute constant $c = c(\epsilon) > 0$ such that for every n , there is a set $P \subseteq \mathbb{R}^n$ with $|P| \geq c^n$ with the property that every triangle formed by a triple of points in P is almost equilateral.

Hint: Show that if $x, y, z \sim \{0, 1\}^n$ (independent), then $\|x - y\|^2$ is likely very close to $n/2$ and $\langle x - z, y - z \rangle$ is likely very close to $n/4$.

Problem 3. Improve Chernoff's bound for sums of independent Bernoulli random variables with small means.

- A. Suppose that X is a random variable satisfying $0 \leq X \leq 1$. Prove that $\mathbb{E} e^{tX} \leq e^{(e^t-1)\mathbb{E} X}$ for every $t \in \mathbb{R}$.
- B. Suppose that X_1, \dots, X_n are independent random variables satisfying $0 \leq X_i \leq 1$ for every i . Set $S = X_1 + \dots + X_n$ and $\mu = \mathbb{E} S$. Prove that

$$\mathbf{Pr}[S \geq (1 + \delta)\mu] \leq e^{-\frac{\delta^2}{2+\delta}\mu} \quad \text{for all } \delta > 0,$$

$$\mathbf{Pr}[S \leq (1 - \delta)\mu] \leq e^{-\frac{\delta^2}{2}\mu} \quad \text{for all } 0 < \delta < 1.$$

Hint: The following inequalities may be helpful:

$$\log(1 + x) \geq \frac{2x}{2 + x} \quad \text{for all } x > 0, \quad \text{and} \quad \log(1 - x) \geq -\frac{x(2 - x)}{2(1 - x)} \quad \text{for all } 0 < x < 1.$$

- C. Consider $G(n, p)$ with $p = \frac{c}{n}$ for some fixed $c > 0$. Use the Chernoff bound from part B. to prove the following facts:

- The average degree of $G(n, \frac{c}{n})$ is $c + o(1)$ w.h.p.
- $\Delta(G(n, \frac{c}{n})) \leq O(\log n)$ w.h.p.

Can the Chernoff bound proved in class be used to establish either of these facts?