(1) Let P(n) be some variable proposition. Suppose we wanted to prove ¥n € N. P(n).
(a) Write the induction hypothesis if we were to use weak induction.

(b) Write the induction hypothesis if we were to use strong induction.

(2) Let f: R — R be a function that satisfies f(zy) =z - f(y) +y - f(z) for all z,y € R.

(a) Show that f(1) =0.

(b) Show that for any € R and n € N, f(z") = na"~! f(z).

(3) Let S = {5z + Ty : x,y € NU{0}}. Determine exactly which numbers are in S. Prove your claim.

(4) Consider the sequence of numbers defined by ag = 1, a3 = 8 and a,, = ap—1 + 2a,—2 for n > 2. Prove
that a, =3-2" — 2. (=1)" for all n € NU {0}.

(5) Consider a sequence of real numbers aq,aq, ... satisfying a,, = 2a,,—1 + 3a,_2 for all n > 3. Show that
if a; and ao are odd, then a,, is odd for all n € N.

(6) Consider the following two player game called Chomp. Begin with an n x n board. On a player’s turn,
then will pick a uncolored square and color in that square along with every square above and to the right
of it. More precisely, if a player picks a square (z,y), they will color in all squares of the form (z,w)
where z > x and w > y. The player who colors in the bottom-left square loses. Suppose Alice and Bob
play this game and Alice is the first player. Find a winning strategy for Alice; that is, describe a way for
Alice to always win no matter what Bob does on his move. Consider small cases of n to find a pattern
and then try and prove it for all n. (Hint: you may have to consider a slightly different game)ﬂ

(7) Show that every natural number can be expressed in exactly one way as the product of an odd number
and a power of 2.

(8) Consider the following object called an L-piece:

=

We say that an m x n board has an L-tiling if we can tile it with L-pieces (which can be rotated).
(a) Let R, be a 2" x 2" board with a single corner square removed. Show that R,, has an L-tiling for
every n € N.
(b) Let S, be a 2™ x 2™ board with any single square removed. Show that S,, has an L-tiling for every
n € N.

1Interestingly7 Alice actually has a winning strategy on any m X n board; however, I don’t believe anyone actually knows what
it looks like in general unless m = n. So even though we don’t know how, we do know Alice can always win!
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(a) For some ng € N, P(ng) holds.

(b) For some ng € N, if m < ng and m € N, then P(m) holds.

(a) We calculate f(1) = f(1-1)=1-f1)+1-f(1)=2- f(1). Thus, f(1) =0.
(b) We prove by induction on n.

Base case: For n = 0, we have f(z°) = f(1) = 0 as per part (a)

Induction hypothesis: For some ng € NU {0}, f(2) = ngz™ ! f(z).
Induction step: We calculate

fl@™*t) = f(am - x)
=" f(x) + zf(a™)
= 2™ f(z) 4+ 2 - nox"™ L f(z) (By the induction hypothesis)
= (no + 1)z f(x).

Thus, we have proved the claim.
Ehhhhh... this was a bad question. The answer is all natural numbers above some point.
We prove by induction on n.
Base case: Forn=0,a0=1=3-2-2-(-1)% and forn=1,a; =8=3-2" — 2. (1)L
Induction hypothesis: For some ng € NU {0}, we have a,, = 3-2™ —2-(—=1)™ for all m < ng with
m € NU {0}.
Induction step: As we have already verified n = 0,1, we may suppose ng > 2, so we may appeal to

the recurrence relation. We calculate

Ony = Qpg—1 + 20p,—2
=(3-2m =2 (=) ) 4 2(3- 27072 — 2. (1)) (By IH)
=3 (2m0 4 2m07 ) — (—1)m0 (2 — 4)
=3.2m0 — 2. (=1)",

We prove by induction on n.

Base case: For n = 1,2, a; and as are odd by assumption.

Induction hypothesis: For some ng € N, a,, is odd for all m < ng with m € N.

Induction step: As we have already verified the claim for n = 1,2, we may suppose ng > 3, in which
case we may appeal to the recurrence relation. By the induction hypothesis, a,,—1 and a,,—2 are odd,
so there are integers k, ¢ such that a,,—1 = 2k + 1 and a,,—2 = 2¢ + 1. Thus,

Ony = 20ny—1 + 3py—2
=22k +1)+3(2(+1)
=4k+60+5
=2(2k 4+ 30+2) + 1.
Thus, as 2k + 3¢ + 2 € Z, we have that a,, is odd.
It was pointed out that Alice does not have a winning strategy if n = 1, so let’s suppose n > 2. Alice’s
strategy will be as follows: First, Alice will color square (2,2) which removes all squares other than a

vertical and horizontal “arm.” After this, whenever Bob colors a square on one arm, Alice will color the

corresponding square on the other arm.



To show this works, notice that after the first move, the game is essentially the same as the game
with the two piles of pebbles that we considered in class.
We prove by induction.

Base case: Certainly 1 is uniquely expressible as the product of a power of 2 and an odd number,
namely 1 =2°.1.

Induction hypothesis: For some ng € N, if m < ng with m € N, then m is uniquely expressible as the
product of a power of 2 and an odd number.

Induction step: Case 1: If ng is odd, then certainly the only way to express ng is ng = 2° - ng.

Case 1: If ng is even, then let m = ngy/2, so we have m € N and m < ny. We proceed in two steps.

Existence: By the induction hypothesis, there is & € NU{0} and an odd integer ¢ for which m = 2 -¢.
Thus, ng = 28+ - ¢.

Uniqueness: Suppose 251 - 1 = ng = 22 . £5; we must show ki = ky and ¢; = l5. As ng is even,
ki,ko > 1, so we have 281=1. ¢, = m = 2k2=1. ¢, Thus, by the induction hypothesis, k1 — 1 = ky — 1
and f1 = 5. Thus, k1 = ko and £; = /5.

(b) implies (a), so we only give a proof for (b). We prove by induction on n

Base case: For n =1, a 2 x 2 board with any square removed is simply an L-piece, so certainly it has
an L-tiling.

Induction hypothesis: For some ng € N, the 2™ x 270 board with any square removed has an L-tiling.

Induction step: Consider the 270+! x 270+ hoard with a single square removed and partition it into
four 2™ x 2™ boards labeled A, B,C, D. Without loss of generality, suppose that the removed square
is in sub-board A. As such, place an L-piece that covers a corner square of B, C, D in the natural way.
A is a 2™ x 2™ hoard with a single square removed, and by considering the squares covered by the one
L-piece to be removed, the same is true of B,C, D. Thus, by the induction hypothesis, A, B,C, D all
have L-tilings. Putting these together yields and L-tiling of the initial board.



