
(1) For integers a, b, write the definition of “a | b.”
(2) Write the definition of a ≡ b (mod n).

(3) Let a, b, n ∈ Z with n ≥ 2.

(a) When does the equation ax ≡ b (mod n) have an integer solution for x?

(b) When does a have an inverse modulo n?

(4) Suppose that n ∈ Z≥2 and a ∈ Z. Show that there is x ∈ [n− 1] such that ax ≡ 0 (mod n) if and only

if gcd(a, n) 6= 1.

(5) What is the last digit of the number 7100?

(6) This exercise will show that there are infinitely many primes of the form 4n + 3.

(a) Show that p is a prime then p = 2 or p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

(b) Suppose there are only finitely many primes of the form 4n + 3 and call them p1, . . . , pk. Consider

the number N = 4(p1 · · · pk)− 1. Arrive at a contradiction.

(7) Show that if n is an odd number and n = x2 + y2 for integers x, y, then n ≡ 1 (mod 4).

(8) Let n ∈ N with n ≥ 2. Show that n | (n− 1)! if and only if n is composite.

(9) Show that there are no x, y ∈ Z for which 3x2 − 5y2 = 15.

(10) This exercise will show that there are infinitely many primes of the form 4n + 1.

(a) Why does a proof similar to that in Question (6) fail in this case?

(b) Suppose there are only finitely many primes of the form 4n + 1 and call them p1, . . . , pk. Consider

the number N = 4(p1 · · · pk)2 + 1. Arrive at a contradiction. (Remember, we proved that if p is an

odd prime and there is x ∈ Z with x2 ≡ −1 (mod p), then p ≡ 1 (mod 4))
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(1) a | b if and only if there exists c ∈ Z with b = ca.

(2) a ≡ b (mod n) if and only if n | (a− b).

(3) (a) ax ≡ b (mod n) has a solution for x if and only if gcd(a, n) | b.
(b) a has an inverse modulo n if and only if gcd(a, n) = 1.

(4) We proved this in class, so look back on your notes.

(5) We calculate

7100 ≡ (−1)50 (mod 10) ≡ 125 (mod 10) ≡ 1 (mod 10).

Thus, the last digit of 7100 is 1.

(6) (a) If n ≡ 0, 2 (mod 4), then 2 | n, so n is not a prime unless n = 2. Thus all primes have p ≡ 1, 3

(mod 4).

(b) We first note that 2, p1, . . . , pk - N as this can only be possible if they were to divide −1, which is

not the case. Thus, let N = q1 . . . qn be the prime factorization. As none of the pi’s nor 2 divide

N , it must be the case that qi ≡ 1 (mod 4) for all i. Thus, N ≡ 1n (mod 4) ≡ 1 (mod 4); a

contradiction as we already know that N ≡ −1 (mod 4) 6≡ 1 (mod 4).

(7) We note that 02 ≡ 0 (mod 4), 12 ≡ 1 (mod 4), 22 ≡ 0 (mod 4) and 32 ≡ 1 (mod 4). We also know that

if n is odd, then n ≡ 1, 3 (mod 4). However, by checking the above cases, we see that x2 + y2 ≡ 0, 1, 2

(mod 4), so if n = x2 + y2 for n odd, then n ≡ 1 (mod 4).

(8) It was pointed out that n = 4 is a counterexample to this statement. However, one direction is true.

Suppose p is a prime and that p | (p − 1)!. As p is prime, by Euclid’s lemma, there is some k ∈ [p − 1]

such that p | k; a contradiction. Thus p - (p− 1)!.

For the other direction, let’s show that if n ≥ 5 is composite, then n | (n − 1)!. Write n = ab where

2 ≤ a, b ≤ n − 1 and first suppose that a 6= b. In this case, a, b ∈ [n − 1], so as a 6= b, each of a and b

appear when multiplying out (n − 1)!. Thus, there is some integer c ∈ Z with (n − 1)! = cab = cn, so

n | (n−1)!. On the other hand, suppose a = b, and a, b 6= 2. From this, we note that n = ab > 2b, and as

a = b, 2b 6= a and 2b, a ∈ [n−1]. Thus, by similar reasoning as above, a and 2b appear when multiplying

out (n− 1)!, so there is some integer c ∈ Z for which (n− 1)! = ca(2b) = 2cn. Thus, n | (n− 1)!.

(9) Suppose that there did exist such x, y, then it must be the case that

3x2 ≡ 0 (mod 5), −5y2 ≡ 0 (mod 3).

As 3, 5 are primes, this means that there are m,n ∈ Z for which x = 5m and y = 3n. Thus, 3(5m)2 −
5(3n)2 = 15, so 5m2 − 3n2 = 1. Taking this equation modulo 3 yields

5m2 ≡ 1 (mod 3).

As 5 ·2 = 10 ≡ 1 (mod 3), multiplying both sides of this equation by 2 yields m2 ≡ 2 (mod 3). However,

we have previously shown that this equation has no solution; a contradiction.

(10) This exercise will show that there are infinitely many primes of the form 4n + 1.

(a) The main issue with a proof similar to that in Question (6) is that multiplying together integers of

the form 4n + 3 can yield an integer of the form 4n + 1.

(b) We first note that 2, p1, . . . , pk - N as this can only be possible if they were to divide 1. Thus,

there is some prime p with p | N . However, p 6= 2, p1, . . . , pk, so it must be the case that p ≡ 3

(mod 4). However, as p | N , N ≡ 0 (mod p). However, this implies that (2p1 · · · pk)2 ≡ −1

(mod p). However, we showed that this can only be the case if p ≡ 1 (mod 4); a contradiction.


