

If you are TeXing, the symbol “.” can be made by adding the command “`\newcommand{\st}{\hbox{\Huge .}}`” to the preamble and then called by “`\st`” when in math mode.

(10 pts)

(1) For each of the following propositions, write the negation without using \neg

(a) [+2] $\forall x \in \mathbb{Z} . \exists y \in \mathbb{Z} . x = 2y$

Proof. $\exists x \in \mathbb{Z} . \forall y \in \mathbb{Z} . x \neq 2y$

□

(b) [+2] $\exists y \in \mathbb{R} . \forall x \in \mathbb{R} . y > x$

Proof. $\forall y \in \mathbb{R} . \exists x \in \mathbb{R} . y \leq x$

□

(c) [+2] $\forall \epsilon > 0 . \exists \delta > 0 . (|x - x_0| < \delta) \Rightarrow (|y - y_0| < \epsilon)$

Proof. $\exists \epsilon > 0 . \forall \delta > 0 . (|x - x_0| < \delta) \wedge (|y - y_0| \geq \epsilon)$

□

(2) Write the contrapositive of the following statements.

(a) [+2] For integers x, y, z , if x divides y and x divides z , then x divides $y + z$.

Proof. For integers x, y, z , if x does not divide $y + z$, then x does not divide y or x does not divide z .

□

(b) [+2] For real numbers x, y , whenever $x \geq y$, it must be the case that $x^2 \geq y^2$.

Proof. For real numbers x, y , if $x^2 < y^2$, then $x < y$.

□

(Rewrite) [+2] Write the contrapositive of the following statement: For any $a, b \in \mathbb{R}$, if $a > b$, then there is $\epsilon > 0$ for which $a > b + \epsilon$.

Proof. For any $a, b \in \mathbb{R}$, if $a \leq b + \epsilon$ for every $\epsilon > 0$, then $a \leq b$.

□