

(9 pts)

(1) [+3] Letting \mathbb{P} be the set of all prime numbers (note that $1 \notin \mathbb{P}$) and $2\mathbb{Z}$ be the set of all even integers, express the following statement using logical symbols: “There exists an even integer that can be written as the sum of two primes in two different ways.”

Proof. $\exists x \in 2\mathbb{Z} . \exists p, q, r, s \in \mathbb{P} . (\{p, q\} \neq \{r, s\}) \wedge (x = p + q = r + s)$ □

(2) [+3] Prove or disprove the following: $\forall n \in \mathbb{Z} . (n < \sqrt{10}) \vee (n > 3)$.

Proof. As $p \vee q \equiv (\neg p) \Rightarrow q$, it suffices to prove the following: $\forall n \in \mathbb{Z} . (n \geq \sqrt{10}) \Rightarrow (n > 3)$. Now the statement is essentially trivial. Namely, if $n \in \mathbb{Z}$ has $n \geq \sqrt{10}$, then $n \geq \sqrt{10} > \sqrt{9} = 3$, so $n > 3$. □

(3) [+3] Consider the following two logical statements:

(a) $\forall \epsilon > 0 . \forall x, y \in \mathbb{R} . \exists \delta > 0 . (|x - y| < \delta) \Rightarrow (|(3x - 4) - (3y - 4)| < \epsilon)$
 (b) $\forall \epsilon > 0 . \exists \delta > 0 . \forall x, y \in \mathbb{R} . (|x - y| < \delta) \Rightarrow (|(3x - 4) - (3y - 4)| < \epsilon)$

Explain the difference between (a) and (b).

Proof. The only difference between these two statements is the order of the quantifiers. In (a), we have “ $\forall x, y \in \mathbb{R} . \exists \delta > 0$,” so the δ can depend on x and y . However, in (b), we have “ $\exists \delta > 0 . \forall x, y \in \mathbb{R}$,” so there must be some δ that works for every choice of x and y , i.e. δ is not allowed to depend on the choice of x and y .

In fact, (b) \Rightarrow (a), and it can be shown that both statements are true. As another note, if $f : \mathbb{R} \rightarrow \mathbb{R}$, then the statement “ $\forall \epsilon > 0 . \forall x, y \in \mathbb{R} . \exists \delta > 0 . (|x - y| < \delta) \Rightarrow (|f(x) - f(y)| < \epsilon)$ ” is the definition of f being continuous, whereas “ $\forall \epsilon > 0 . \exists \delta > 0 . \forall x, y \in \mathbb{R} . (|x - y| < \delta) \Rightarrow (|f(x) - f(y)| < \epsilon)$ ” is the definition of f being uniformly continuous. □

(Rewrite) [+2] Recall that $2\mathbb{Z}$ is the set of even integers. Write the following using logical symbols: “Every even integer can be written as $2m$ for some integer m .”

Proof. $\forall n \in 2\mathbb{Z} . \exists m \in \mathbb{Z} . n = 2m$ □