

Recall that for $a_1, \dots, a_n \in \mathbb{R}$, $\prod_{i=1}^n a_i = a_1 a_2 \cdots a_n$.

Justify all answers!

(8 pts)

(1) [+] Prove that for any $n \in \mathbb{N}$ and any $x_1, \dots, x_n \in [0, 1]$,

$$\prod_{i=1}^n (1 - x_i) \geq 1 - \sum_{i=1}^n x_i.$$

Proof. We prove by induction on n .

Base case: For $n = 1$, $\prod_{i=1}^1 (1 - x_i) = 1 - x_1 = 1 - \sum_{i=1}^1 x_i$.

Induction hypothesis: Suppose for some $n_0 \in \mathbb{N}$, for any $x_1, \dots, x_{n_0} \in [0, 1]$, we have $\prod_{i=1}^{n_0} (1 - x_i) \geq 1 - \sum_{i=1}^{n_0} x_i$.

Induction step: Let $x_1, \dots, x_{n_0+1} \in [0, 1]$ be arbitrary. Assuming the induction hypothesis, we must show that $\prod_{i=1}^{n_0+1} (1 - x_i) \geq 1 - \sum_{i=1}^{n_0+1} x_i$. We now calculate

$$\begin{aligned} \prod_{i=1}^{n_0+1} (1 - x_i) &= \left(\prod_{i=1}^{n_0} (1 - x_i) \right) (1 - x_{n_0+1}) \\ &\geq \left(1 - \sum_{i=1}^{n_0} x_i \right) (1 - x_{n_0+1}) && \text{(By the IH and the fact that } (1 - x_{n_0+1}) \geq 0 \text{)} \\ &= 1 - \sum_{i=1}^{n_0} x_i - x_{n_0+1} + x_{n_0+1} \sum_{i=1}^{n_0} x_i \\ &\geq 1 - \sum_{i=1}^{n_0+1} x_i && \text{(as } x_i \geq 0 \text{ for all } i \in [n_0 + 1] \text{).} \end{aligned}$$

Thus, by the principle of mathematical induction, we have proved the claim. \square

(Rewrite) [+] Give a counterexample to the claim you were asked to prove in the homework if x_1, \dots, x_n are allowed to be any real numbers and not required to be in $[0, 1]$. That is, for some $n \in \mathbb{N}$, find real numbers x_1, \dots, x_n , for which $\prod_{i=1}^n (1 - x_i) < 1 - \sum_{i=1}^n x_i$.

Proof. Consider $x_1 = -1$ and $x_2 = 2$. Then $(1 - x_1)(1 - x_2) = -2$ while $1 - (-1 + 2) = 0$. \square