
Concepts of Mathematics
Weekly Assignment #4 –

Solutions
Due July 28

Throughout this assignment, you may freely use the identity (x− 1)
∑n

i=0 x
i = xn+1− 1, which holds for all

x ∈ R \ {0} and n ∈ N ∪ {0}, which we proved in class.

Justify all answers!

(22 pts)

(1) [+8] Let a, n ∈ N with n ≥ 2. Prove that if an − 1 is a prime, then a = 2 and n is a prime.

Proof. Using the identity mentioned above,

an − 1 = (a− 1)

n−1∑
k=0

ak.

Thus (a− 1) | (an− 1), so as an− 1 is prime, it must be the case that a− 1 ∈ {1, an− 1}. Now, as a ∈ N
and n ≥ 2, a− 1 < an − 1, so we must have a− 1 = 1. In other words, a = 2.

Now that we know a = 2, suppose for sake of contradiction that n is not prime. Thus, we can find

r, s ∈ N with 1 < r, s < n and n = rs. Again appealing to the identity mentioned above

2n − 1 = (2r)s − 1 = (2r − 1)

r−1∑
k=0

2rs,

so we have (2r − 1) | (2n − 1). By assumption, 2n − 1 is prime, so 2r − 1 ∈ {1, 2n − 1}. However, r < n,

so 2r − 1 = 1. This implies that r = 1; a contradiction. Thus n must be a prime. �

(2) For n ∈ N, define

σ(n) :=
∑
d|n

d.

For example, σ(12) = 1 + 2 + 3 + 4 + 6 + 12. We say that n is perfect if σ(n) = 2n. For example, 6 is

perfect as σ(6) = 1 + 2 + 3 + 6 = 12.

(a) [+2] Let p be a prime and k ∈ N. Show that σ(pk) = pk+1−1
p−1 .

Proof. As p is a prime, the only divisors of pk are pi for i ∈ {0, 1, . . . , k}. Thus, by appealing to the

identity mentioned above,

σ(pk) =

k∑
i=0

pi =
pk+1 − 1

p− 1
. �

(b) [+6] Let p be a prime and n ∈ N with p - n. Prove that σ(pn) = σ(p)σ(n).

Proof. As p is prime, the divisors of pn have the form d or pd for d | n. Further, as p - n, these two

types of divisors are distinct. Thus,

σ(pn) =
∑
d|pn

d =
∑
d|n

d+
∑
d|n

pd = (1 + p)
∑
d|n

d = σ(p)σ(n). �

(c) [+6] Let n ∈ N and suppose that 2n − 1 is prime. Show that 2n−1(2n − 1) is perfect.
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Proof. As 2n− 1 is prime, we must have n ≥ 2, so certainly (2n− 1) - 2n−1 as 2n−1 < 2n− 1. Using

parts (a) and (b) we calculate

σ
(
2n−1(2n − 1)

)
= σ(2n−1)σ(2n − 1)

=

(
2n − 1

2− 1

)(
1 + (2n − 1)

)
= (2n − 1)2n = 2

(
2n−1(2n − 1)

)
.

Thus, 2n−1(2n − 1) is perfect. �

(d) Bonus. [+∞] Prove or disprove: There are no odd perfect numbers.

Proof. No effing clue. �

(3) Bonus. [+3] Let pn be the nth prime, e.g. p1 = 2, p2 = 3, p3 = 5, etc. Prove that pn ≤ 22
n−1

.1

Proof. As shown in class, if N = (p1p2 · · · pn) + 1, then pi - N for all i ∈ [n]. Thus, as there is some

prime which must divide N , we know that, even if pn+1 - N , we must have pn+1 ≤ N = (p1p2 · · · pn) + 1

for all n ∈ N. We now prove the claim by induction on n.

Base case: For n = 1, p1 = 2 = 22
1−1

.

Induction hypothesis: For some n0 ∈ N, pm ≤ 22
m−1

for all m ∈ N and m < n0.

Induction step: We must show that pn0
≤ 22

n0−1

. By the earlier comment, we bound

pn0 ≤
(
p1 · · · pn0−1

)
+ 1

≤
n0−1∏
i=1

22
i−1

+ 1 (By the IH)

= 2
∑n0−1

i=1 2i−1

+ 1

= 2
∑n0−2

i=0 2i + 1

= 22
n0−1−1 + 1 (By the identity mentioned above)

≤ 22
n0−1

.

Thus, by the principle of mathematical induction, the claim holds for all n ∈ N. �

(Rewrite) [+3] Show that if n is not a prime, then σ(n) 6= n+ 1.

Proof. If n = 1, then σ(1) = 1 6= 1+1, so suppose n ≥ 2 is not a prime. Thus, there is some a ∈ N\{1, n}
such that a | n. As such, σ(n) ≥ 1 + a+ n > n+ 1, so σ(n) 6= n+ 1. �

1In fact, it can be shown through a similar idea that pn ≤ 2n, but we have not developed all of the tools to do this. Through

much more complicated techniques, it can actually be shown that pn =
(
1 + c(n)

)
n logn where c(n)→ 0 as n→∞.


