
Concepts of Mathematics
Weekly Assignment #5 –

Solutions
Due August 4

Justify all answers!

(18 pts)

(1) [+2] What is the error in the following “proof” that R is countable?

Proof. Let F = {y ∈ R : 0 ≤ y < 1} and for y ∈ F , define Xy = {y + c : c ∈ Z}. For example,

X1/2 = {. . . ,−3/2,−1/2, 1/2, 3/2, . . .}. Certainly each Xy is countable as there is a natural bijection

with Z. Additionally

R =
⋃
y∈F

Xy,

as any real number can be written as a sum of its integer part and its fractional part. Thus, R is the

union of countable sets, so R itself is countable. �

Problem. In class we proved that the countable union of countable sets is countable. However, F is an

uncountable set, as we showed in class, and it is not necessarily the case that an uncountable union of

countable sets is countable. In fact, it is easy to show that the uncountable union of nonempty, disjoint

sets must be uncountable, so as the Xy’s are nonempty and disjoint, it actually must be the case that

R is uncountable as F is uncountable. �

(2) In this exercise, we will consider Cartesian products of countable sets.

(a) [+8] Let X1, X2, . . . , Xn be countable sets. Prove that X1 ×X2 × · · · ×Xn is countable. Keep in

mind that A×B ×C 6= (A×B)×C. (Note: we proved in class that X1 ×X2 is countable, so you

are free to use this fact)

Proof 1. We prove by induction on n.

Base case: If n = 1, then X1 is countable by assumption. If n = 2, then X1 ×X2 is countable as

we proved in class.

Induction hypothesis: For some n0 ∈ N, X1 × · · · ×Xn0 is countable.

Induction step: We must show that X1× · · · ×Xn0+1 is countable. We first notice that |X1× · · · ×
Xn0+1| = |(X1 × · · · × Xn0) × Xn0+1| as is illustrated by the natural bijection (x1, . . . , xn0+1) 7→(
(x1, . . . , xn0), xn0+1

)
, so let A = X1 × · · · × Xn0 , so |X1 × · · · × Xn0+1| = |A × Xn0+1|. By the

induction hypothesis, A is countable, so as Xn0+1 is countable, we find that A×Xn0+1 is countable

by the n = 2 case. Thus as |X1 × · · · ×Xn0+1| = |A ×Xn0+1|, we know that X1 × · · · ×Xn0+1 is

also countable.

By the principle of mathematical induction, we have shown the claim. �

Proof 2. We prove by induction on n.

Base case: If n = 1, then X1 is countable by assumption.

Induction hypothesis: For some n0 ∈ N, X1 × · · · ×Xn0
is countable.

Induction step: We must show that X1 × · · · ×Xn0+1 is countable. For y ∈ Xn0+1, define the set

Ay = {(x1, . . . , xn0
, y) : xi ∈ Xi}. It is clear that X1 × · · · ×Xn0+1 =

⋃
y∈Xn0+1

Ay. By induction

X1 × · · · ×Xn0
is countable, so as there is a straightforward bijection between this and Ay for any

fixed y ∈ Xn0+1, namely (x1, . . . , xn0
) 7→ (x1, . . . , xn0

, y), we know that Ay is countable. Thus, as

Xn0+1 is countable, we have written X1 × · · · × Xn0+1 as the countable union of countable sets;

thus it must be countable. �
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Proof 3. Let Nn =

n︷ ︸︸ ︷
N× · · · × N. As Xi is countable, there is an injection fi : Xi → N. Thus, the

function f : X1×· · ·×Xn → Nn defined by f(x1, . . . , xn) =
(
f1(x1), . . . , fn(xn)

)
is also an injection.

As such, it suffices to show that Nn is countable.

To do this, we will establish an injection f : Nn → N. To do so, let p1 = 2, p2 = 3 and so on. In

particular, pi is the ith prime number. Now, define f : Nn → N by f(x1, . . . , xn) = px1
1 px2

2 · · · pxn
n

for all (x1, . . . , xn) ∈ Nn. Certainly f is well-defined.

Suppose that for some (x1, . . . , xn), (y1, . . . , yn) ∈ Nn, we have f(x1, . . . , xn) = f(y1, . . . , yn); thus

px1
1 · · · pxn

n = py1

1 · · · pyn
n . By the Fundamental Theorem of Arithmetic, as p1, . . . , pn are distinct

primes, we must have x1 = y1, x2 = y2, and so on. Thus, (x1, . . . , xn) = (y1, . . . , yn), so f is an

injection. �

(b) [+8] Let X =
∏

n∈N{0, 1}, in other words, X = {(x1, x2, x3, . . . ) : xn ∈ {0, 1} for all n ∈ N}. Prove

that X is uncountable. (Hint: There are many ways to do this. I suggest either modifying the

diagonalization proof that R is uncountable or coming up with a bijection to a set that we already

know is uncountable)

Proof 1. Suppose for the sake of contradiction that f : N → X is a surjection and let f(n) =

(an1, an2, an3, . . . ). Now, define

xn =

1 if ann = 0;

0 if ann = 1.

Certainly (x1, x2, . . . ) ∈ X, so there must be some N ∈ N with f(N) = (x1, x2, . . . ) as f is a

surjection. However, by assumption, f(N) = (aN1, aN2, . . . ), so we must have x1 = aN1, x2 = aN2

and so on. In particular, xN = aNN . However, based on how we defined xN , if aNN = 0, then

xN = 1 and if aNN = 1, then xN = 0, so xN 6= aNN ; a contradiction! �

Proof 2. We will show that |X| = |P(N)|, so that X is uncountable as we have shown that P(N) is

uncountable. To do this, we will provide an explicit bijection. This bijection will be similar to the

one we established in class to show |P([n])| = 2n.

For a string x = (x1, x2, . . . ) ∈ X, define Sx = {n ∈ N : xn = 1}. Now let f : X → P(N) be defined

by f(x) = Sx. Certainly f is a function with codomain P(N) as Sx ⊆ N for all x ∈ X.

First we argue that f is an injection. Let x,x′ ∈ X where x = (x1, x2, . . . ) and x′ = (x′
1, x

′
2, . . . )

and suppose x 6= x′. Thus, there is some n ∈ N for which xn 6= x′
n. If xn = 1, then n ∈ Sx but

n /∈ Sx′ , so f(x) 6= f(x′). The same conclusion follows if x′
n = 1. Thus, f is an injection.

To argue that f is a surjection, let S ∈ P(N). Now define s = (s1, s2, . . . ) where sn = 1 if n ∈ S

and sn = 0 if n /∈ S. Certainly s ∈ X and f(s) = S, so f is a surjection.

As such, f is a bijection, so |X| = |P(N)|, so X is uncountable.

In fact, a very similar bijection can be established to show that for any set Y ,
∣∣∏

y∈Y {0, 1}
∣∣ =

|P(Y )|. �

(Rewrite) [+2] Do there exist uncountable sets A,B such that A \B is countably infinite?

Proof. Yes. Consider A = R and B = R \ N. As R is uncountable and N is countable, we know that A

and B are both uncountable. However, A \B = N, which is countably infinite. �


