

Definitions. Write the definitions of the following.

- | | | |
|-----------------------------|--|--------------------------------|
| (1) $A \subseteq B$ | (10) $\mathcal{P}(A)$ | (19) $ A = n$ |
| (2) $A = B$ | (11) $f : A \rightarrow B$ is a function | (20) A is finite |
| (3) $A \not\subseteq B$ | (12) For $X \subseteq A$, $\text{Im}_f(X)$ | (21) A is countable |
| (4) $A \not\subset B$ | (13) For $Y \subseteq B$, $\text{PreIm}_f(Y)$ | (22) A is countably infinite |
| (5) $A \setminus B$ | (14) $f : A \rightarrow B$ is an injection | (23) A is uncountable |
| (6) \overline{A} | (15) $f : A \rightarrow B$ is a surjection | (24) $a b$ |
| (7) $\bigcup_{i \in I} A_i$ | (16) $f : A \rightarrow B$ is a bijection | (25) p is a prime |
| (8) $\bigcap_{i \in I} A_i$ | (17) $ A \leq B $ | (26) $\gcd(a, b)$ |
| (9) $A \times B$ | (18) $ A = B $ | (27) $a \equiv b \pmod{n}$ |

Propositional logic.

- (1) Show that $p \Rightarrow (q \Rightarrow p)$ is a tautology.
- (2) Show that $(\neg p \Rightarrow \text{False}) \Rightarrow p$ is a tautology.
- (3) Show that $\neg(p \vee q) \equiv (\neg p) \wedge (\neg q)$.
- (4) Show that $p \vee q \equiv (\neg p) \Rightarrow q$.
- (5) Write the contrapositive: For all $x, y \in \mathbb{R}$, if $x \leq y + \epsilon$ for every $\epsilon > 0$, then $x \leq y$.
- (6) Write the negation: For every $\epsilon > 0$, there is some $\delta > 0$ such that whenever $|x - x_0| < \delta$, it must be the case that $|y - y_0| < \epsilon$.

Sets.

- (1) Show that $\overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i}$.
- (2) Show that $A \setminus B = B \setminus A$ if and only if $A = B$.
- (3) Show that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- (4) Let $f : A \rightarrow B$ and $X, Y \subseteq B$. Show that $\text{PreIm}_f(A \cap B) = \text{PreIm}_f(A) \cap \text{PreIm}_f(B)$.
- (5) Show that $\bigcup_{n \in \mathbb{N}} \mathcal{P}([n]) \subseteq \mathcal{P}(\mathbb{N})$. Show that $\mathcal{P}(\mathbb{N}) \not\subseteq \bigcup_{n \in \mathbb{N}} \mathcal{P}([n])$.

Induction.

- (1) Let a_0, a_1, a_2, \dots be a sequence defined by $a_0 = 1$, $a_1 = 8$ and $a_n = a_{n-1} + 2a_{n-2}$ for $n \geq 2$. Prove that $a_n = 3 \cdot 2^n - 2 \cdot (-1)^n$ for all $n \in \mathbb{N} \cup \{0\}$.
- (2) Let f_0, f_1, \dots be the Fibonacci numbers, i.e. $f_0 = 0$, $f_1 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for $n \geq 2$. Prove that $\sum_{i=1}^n f_i = f_{n+2} - 1$ for all $n \in \mathbb{N}$.
- (3) If $\varphi \in \mathbb{R}$ has the property that $\varphi^2 = 1 + \varphi$, show that $\varphi^n = \varphi \cdot f_n + f_{n-1}$ for all $n \in \mathbb{N}$.

Properties of the integers.

- (1) Let $x, y, z \in \mathbb{Z}$ with $\gcd(x, y) = 1$. Show that if $x | z$ and $y | z$, then $xy | z$.
- (2) For $a, b \in \mathbb{Z}$, what numbers can be written as $ax + by$ for some integers x, y ?
- (3) When does $ax \equiv b \pmod{n}$ have an integer solution for x ?
- (4) Let $a = "a_n a_{n-1} \dots a_1 a_0"$ where a_i is the i th digit of the decimal form of a . Using modular arithmetic, show that a is even if and only if a_0 is even.
- (5) Show that if p is a prime, then \sqrt{p} is irrational.

jections and cardinality.

- (1) Give an example of an injection $f : \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$.
- (2) Give an example of a surjection $f : \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N}$.
- (3) Show that $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x, y) = 2^{x-1}(2y-1)$ is a bijection.
- (4) Let $f : A \rightarrow B$ and $g : B \rightarrow C$. Show that if f, g are injections, then $g \circ f$ is an injection.
- (5) Show that if f, g are surjections, then $g \circ f$ is a surjection.
- (6) Without using the fact that \mathbb{Q} is countable, write \mathbb{Q} as the countable union of countable sets.
- (7) Show that if A is uncountable and B is countable, then $A \setminus B$ is uncountable.
- (8) Find an example of two uncountable sets A, B where $A \setminus B$ is countably infinite.