
Discrete Math Quiz #11 Solutions Apr 7

These solutions are from http://math.cmu.edu/~cocox/teaching/discrete20/quiz11sol.pdf

Problem 1. Let X be a random variable on a finite or countable probability space (Ω,Pr) such that

EX is finite. Show that there exist ω, ω′ ∈ Ω for which X(ω) ≤ EX ≤ X(ω′).

Solution. Suppose for the sake of contradiction that X(ω) > EX for all ω ∈ Ω. Then

EX =
∑
ω∈Ω

X(ω)Pr[ω] >
∑
ω∈Ω

(EX)Pr[ω] = EX;

a contradiction. Thus, there is some ω ∈ Ω such that X(ω) ≤ EX. A symmetric argument shows

that there is some ω′ ∈ Ω for which X(ω′) ≥ EX.

Problem 2. State and prove Markov’s inequality.

Solution. Markov’s inequality states that if X is a non-negative random variable and t > 0, then

Pr[X ≥ t] ≤ 1

t
EX.

To prove this, let A = {ω ∈ Ω : X(ω) ≥ t}; then, by using X(ω) ≥ t for ω ∈ A and X(ω) ≥ 0 for

ω ∈ A, we bound

EX =
∑
ω∈Ω

X(ω)Pr[ω] =
∑
ω∈A

X(ω)Pr[ω] +
∑
ω∈A

X(ω)Pr[ω]

≥ t ·
∑
ω∈A

Pr[ω] = t ·Pr[A] = t ·Pr[X ≥ t],

implying that Pr[X ≥ t] ≤ 1
t EX since t > 0.

Problem 3. State and prove Chebyshev’s inequality.

Solution. Chebyshev’s inequality states that if X is a random variable for which EX is finite, then

for any t > 0,

Pr
[
|X − EX| ≥ t

]
≤ VarX

t2
.

To prove this, set Y =
(
X−EX

)2
, which is well-defined since EX is finite. Since Y is non-negative

and t > 0, we can use Markov’s inequality to bound

Pr
[
|X − EX| ≥ t

]
= Pr[Y ≥ t2] ≤ 1

t2
EY =

1

t2
E
(
X − EX

)2
=

VarX

t2
.

Problem 4. Suppose a coin is biased so that Pr[H] = p and Pr[T ] = 1− p for some fixed p ∈ (0, 1).

Consider repeatedly flipping this coin (flips are independent) until we see a T . Let X be the random

variable which counts the number of heads in the experiment (e.g. X(HHHT ) = 3 and X(T ) = 0).

Compute EX.
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Solution. Since the coin flips are independent, we see that for any n ∈ N, we have

Pr[X = n] = Pr[HnT ] = pn(1− p).

Thus, since p ∈ (0, 1),

EX =
∑
n≥0

n ·Pr[X = n] = (1− p)
∑
n≥0

n · pn = (1− p)
∑
m≥1

∑
n≥m

pn

= (1− p)
∑
m≥1

pm
∑
n≥0

pn = (1− p)
∑
m≥1

pm

1− p
=
∑
m≥1

pm =
p

1− p
.

Here’s another way to compute EX:

EX =
∑
n≥0

n ·Pr[X = n] = (1− p)
∑
n≥0

n · pn = p(1− p)
∑
n≥0

(n + 1)pn

= p(1− p)

[
d

dx

∑
n≥0

xn+1

]
x=p

= p(1− p)

[
d

dx

x

1− x

]
x=p

= p(1− p)
1

(1− p)2
=

p

1− p
.

And one more for good measure. For ω ∈ Ω, let ωi denote the value of the ith coin flip in ω (if it

exists).

EX =
∑
ω∈Ω

X(ω)Pr[ω] =
∑

ω∈Ω: ω1=T

X(ω)Pr[ω] +
∑

ω∈Ω: ω1=H

X(ω)Pr[ω]

= 0 +
∑

ω∈Ω: ω1=H

X(Hω2 · · · )Pr[Hω2 · · · ] =
∑
ω∈Ω

X(Hω)Pr[Hω]

=
∑
ω∈Ω

(
X(ω) + 1

)
· p ·Pr[ω] = p ·

∑
ω∈Ω

X(ω)Pr[ω] + p ·
∑
ω∈Ω

Pr[ω]

= p · EX + p,

so since p ∈ (0, 1), EX = p
1−p .

Problem 5 (Bonus). Recall property Sk from HW7(1). Let n(k) denote the least integer n for which

there is a tournament with n teams which has property Sk. Prove that

2k+1 − 1 ≤ n(k) ≤ k22k+2.

Solution. It is quick to verify n(1) = 3, which satisfies both bounds. Indeed, clearly n(1) > 2 and

the example in HW7(1) shows n(1) ≤ 3. Hence, throughout we assume k ≥ 2.

Upper bound. In HW7(1) we showed that if
(
n
k

)
(1− 2−k)n−k < 1, then there exists a tournament

with n teams which has property Sk. In other words, if
(
n
k

)
(1 − 2−k)n−k < 1, then n(k) ≤ n. Thus,

it suffices to show that if n = k22k+2, then
(
n
k

)
(1− 2−k)n−k < 1. To see this,(

n

k

)
(1− 2−k)n−k ≤ nke−(n−k)2−k

= exp
{
k log n + k2−k − n2−k

}
= exp

{
k log(k22k+2) + k2−k − 4k2

}
< exp

{
2k log k +

9

4
k − 3k2

}
< exp

{
3k − 2k2

}
< 1,
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for all k ≥ 2.

Lower bound. We proceed by induction on k with the base case of n(1) = 3.

Let T be a fixed tournament with teams V and property Sk where |V | = n(k). For v ∈ V , let

N+(v) denote the set of teams that v beat and let N−(v) denote the set of teams that beat v.

Fix any v ∈ V , set V ′ = N−(v) and let T ′ be the tournament induced on V ′. We claim that

T ′ has property Sk−1. Indeed, fix any S′ ∈
(

V ′

k−1

)
and set S = S′ ∪ {v}. Since |S| = k and T has

property Sk, there must be some other team u ∈ V which beats all teams in S; that is S ⊆ N+(u).

We claim that u ∈ V ′. Indeed, if u /∈ V ′, then u ∈ N+(v) (since u 6= v) which would mean that team

v beat team u; a contradiction. Thus, u ∈ V ′, and so there is a team in tournament T ′ which beats

all teams in S′. Since S′ ∈
(

V ′

k−1

)
was arbitrary, this means that T ′ has property Sk−1; in particular

|N−(v)| = |V ′| ≥ n(k − 1).

Now, for any u 6= v ∈ V , either v ∈ N−(u) or u ∈ N−(v) (but not both). Hence,(
|V |
2

)
=

∑
{u,v}∈(V2)

1 =
∑
v∈V

∑
u∈N−(v)

1 =
∑
v∈V
|N−(v)| ≥ |V | · n(k − 1)

=⇒ |V | − 1

2
≥ n(k − 1).

Thus, by induction, we have n(k) = |V | ≥ 2n(k − 1) + 1 ≥ 2(2k − 1) + 1 = 2k+1 − 1.
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