Discrete Math Quiz #11 Solutions Apr 7

These solutions are from http://math.cmu.edu/~cocox/teaching/discrete20/quizlisol.pdf

Problem 1. Let X be a random variable on a finite or countable probability space (€2, Pr) such that
E X is finite. Show that there exist w,w’ € Q for which X (w) <EX < X(u).

Solution. Suppose for the sake of contradiction that X (w) > E X for all w € . Then

EX = ZQX(OJ) Prlw] > ;Z(EX) Prjw] = EX;

a contradiction. Thus, there is some w € € such that X (w) < EX. A symmetric argument shows
that there is some w’ € Q for which X («') > E X. O

Problem 2. State and prove Markov’s inequality.
Solution. Markov’s inequality states that if X is a non-negative random variable and ¢ > 0, then
1
Pr[X >t < ZIEX.

To prove this, let A = {w € Q: X(w) > t}; then, by using X (w) >t for w € A and X (w) > 0 for
w € A, we bound

EX =) X(w)Prlw] =) X(w)Prlw]+ ) X(w)Prw|

wen weA weA
>t Y Prlw]=t-Pr[A] =t Pr[X >1],
weA
implying that Pr[X >t] < 1 E X since t > 0. O

Problem 3. State and prove Chebyshev’s inequality.

Solution. Chebyshev’s inequality states that if X is a random variable for which E X is finite, then

for any t > 0,

PrX —EX|>f < YA
$2

To prove this, set Y = (X -EX ) 2, which is well-defined since E X is finite. Since Y is non-negative
and ¢t > 0, we can use Markov’s inequality to bound
1 1 2 VarX

Pr[|X—EX\2t]:Pr[YZtQ]gt—Q]EY:?E(X—EX) =7

O

Problem 4. Suppose a coin is biased so that Pr[H]| = p and Pr[T] = 1 — p for some fixed p € (0,1).
Consider repeatedly flipping this coin (flips are independent) until we see a T. Let X be the random
variable which counts the number of heads in the experiment (e.g. X(HHHT) = 3 and X(T') = 0).
Compute E X.


http://math.cmu.edu/~cocox/teaching/discrete20/quiz11sol.pdf

Solution. Since the coin flips are independent, we see that for any n € N, we have
Pr[X =n|=Pr[H"T] = p"(1 — p).
Thus, since p € (0, 1),

EX:Zn‘Pr[X:n}:(1—p)Zn-p":(1—p)Z Zp”

n>0 n>0 m>1n>m
_ mN o m_ _P
== ) Y " =0-pD =D =
m>1 n>0 m>1 p m>1 p

Here’s another way to compute E X:

EX= n-PrX=n]=(1-p)> n-p"=pl—p) ) (n+1)p"

n>0 n>0 n>0
_ d n+1 _ d €z
=p(1 p)[dxzw ] - =l p)[dxlx] )
n>0 z=p z=p
1 D
=p(1—p)

1-p2 1-p

And one more for good measure. For w € €2, let w; denote the value of the ith coin flip in w (if it

exists).
EX =) XwPrw= > XwPrwl+ >  X(w)Prl
we we: w1 =T we: wi=H
=0+ Y  X(Hwy--)Pr[Hwy---]=) X(Hw)Pr[Hw|
weN: wi=H wef
= Z(X(w)—l—l) -p-Prlw]=p- ZX(w)Pr[w] +p- ZPr[w]
we wes weN
=p-EX +p,
SO Sincepe(O,l),Ele%p. O

Problem 5 (Bonus). Recall property Sy from HW7(1). Let n(k) denote the least integer n for which
there is a tournament with n teams which has property Si. Prove that

2k+1 -1 < n(k:) < k22k+2.
Solution. It is quick to verify n(1) = 3, which satisfies both bounds. Indeed, clearly n(1) > 2 and
the example in HW7(1) shows n(1) < 3. Hence, throughout we assume &k > 2.

Upper bound. In HW7(1) we showed that if (})(1 —27%)""% < 1, then there exists a tournament
with n teams which has property Si. In other words, if (Z)(l —27Fyn=F < 1, then n(k) < n. Thus,
it suffices to show that if n = k2252, then (})(1 —27%)"% < 1. To see this,

(Z) (1—27kFnk<p e~ (n=h27" exp{klogn + K27k — n27k}
= exp{klog(k*2""?) + k2% — 4k?}

9
< exp{2/~clog/~c + k- 3k2} < exp{3k —2k*} < 1,



for all £ > 2.

Lower bound. We proceed by induction on k with the base case of n(1) = 3.

Let T be a fixed tournament with teams V' and property S where |V| = n(k). For v € V, let
N7 (v) denote the set of teams that v beat and let N~ (v) denote the set of teams that beat v.

Fix any v € V, set V/ = N~ (v) and let T be the tournament induced on V’. We claim that
T’ has property Si_1. Indeed, fix any S’ € (k‘:ll) and set S = S’ U {v}. Since |S| = k and T has
property S, there must be some other team u € V which beats all teams in S; that is S C N (u).
We claim that u € V’. Indeed, if u ¢ V', then u € N*(v) (since u # v) which would mean that team
v beat team u; a contradiction. Thus, u € V', and so there is a team in tournament 7" which beats
all teams in S’. Since S’ € (,{Kll) was arbitrary, this means that 7" has property Sy_1; in particular
IN=(@)] = V7 > n(k — 1).

Now, for any u # v € V, either v € N~ (u) or w € N~ (v) (but not both). Hence,

<\‘2/!>: EEDD Z 1= " IN"()| > |V|-n(k—1)

{u,v}e( ) veV ueN—(v) veV
-1
Vi-1 > n(k—1).
2
Thus, by induction, we have n(k) = |[V| > 2n(k — 1) +1 > 2(2F — 1) + 1 = 2k — 1. O



