
Discrete Math Quiz #12 Solutions Apr 14

These solutions are from http://math.cmu.edu/~cocox/teaching/discrete20/quiz12sol.pdf

Problem 1. Prove that G is a connected, 2-regular graph if and only if G is a cycle.

Solution. Certainly every cycle is connected and 2-regular, so we need only show the “only if”

direction.

By HW8(5a), we know that G has a cycle (v1, . . . , vk). Since G is 2-regular, we observe that there

cannot be any additional edges among v1, . . . , vk. Hence, if V = {v1, . . . , vk}, then G is a cycle.

Suppose this is not the case; that is, V \ {v1, . . . , vk} 6= ∅. Since G is connected, we know that

there must be an edges between {v1, . . . , vk} and V \ {v1, . . . , vk}; suppose such an edge is {vj , u}.
But then vj−1, vj+1, u are distinct vertices adjacent to vj , meaning deg(vj) ≥ 3; a contradiction.

Problem 2. There are n ≥ 3 participants in an event. Each of these participants know at least n/2

other participants. Show that there is a way to seat the participants around a circular table so that

each participant knows both people seated next to them.

Solution. Build a graph G = (V,E) where V is the set of participants and for u 6= v ∈ V , {u, v} ∈ E
if u and v know one another. By assumption, G is a graph on n ≥ 3 vertices and δ(G) ≥ n/2. Dirac’s

theorem then tells us that G has a Hamilton cycle. Thus, seating the participants around the table

in the order that they’re visited by such a Hamilton cycle yields a valid arrangement.

Problem 3. Let G be any graph. A cycle decomposition of G is a collection of cycles C1, . . . , Ck that

partition the edge-set of G; that is E =
⊔k

i=1E(Ci). Note that in a cycle decomposition, the cycles

can share vertices, but they cannot share edges.

Show that G has a cycle decomposition if and only if every vertex of G has even degree.

Solution. Suppose that G has a cycle decomposition C1, . . . , Ck. Fix any vertex v ∈ V and let

Ev = {e ∈ E : v ∈ e}. Observe that for any i ∈ [k], |Ev ∩ E(Ci)| ∈ {0, 2}. Hence, since C1, . . . , Ck

form a partition of E, we have

deg(v) = |Ev| =
k∑

i=1

|Ev ∩ E(Ci)|,

which is even.

Now, suppose that every vertex of G has even degree. We prove that G has a cycle decomposition

by induction on the number of edges of G. Observe that if |E| = 0, then this is vacuously true, so

suppose that |E| ≥ 1.

We can decompose G into its connected components G = G1 ∪ · · · ∪ G`, so Gi is connected and

the Gi’s are vertex disjoint. Since |E| ≥ 1, by relabeling the Gi’s if necessary, we may suppose that

|E(G1)| ≥ 1; in particular, deg(v) ≥ 1 for all v ∈ V (G1) (why?). By assumption, each vertex of G

has even degree, so in fact deg(v) ≥ 2 for all v ∈ V (G1). Hence, thanks to HW8(5a), we know that

G1 has a cycle; call it C1.
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Form a new graph G′ by deleting the edges of C1 from G. Since every v ∈ V is incident to either

0 or 2 edges in C1, we see that every vertex of G′ also has even degree. Furthermore, |E(G′)| =

|E| − |E(C1)| < |E|, so by induction we can find a cycle decomposition of G′, call it C2, . . . , Ck

(note that this may be empty if G′ is the empty graph). By construction, E = E(G′) t E(C1), so

E =
⊔k

i=1E(Ci). In other words, C1, . . . , Ck is a cycle decomposition of G.

Problem 4. Let G be a graph. Let conn(G) denote the set of connected components of G (e.g.

conn(G) = {G} if and only if G is connected). For a subset U ⊆ V , let G − U denote the graph

formed by deleting the vertices in U from G: formally, V (G−U) = V \U and E(G−U) = E∩
(
V \U
2

)
.

Show that if G is Hamiltonian, then | conn(G− U)| ≤ |U | for all non-empty U ⊆ V .

Solution. Let U ⊆ V be a non-empty subset of the vertices. If U = V , then conn(G − U) = ∅,

which certainly satisfies the condition, so suppose that U ( V .

Fix any Hamilton cycle (v1, . . . , vn); without loss of generality, we may suppose that vn ∈ U . For

H ∈ conn(G− U), let i be the largest index for which vi ∈ V (H) and define f(H) = vi+1. We claim

that f is an injection from conn(G− U) to U , which will imply the claim.

Firstly, we must argue that f is well-defined. Since (v1, . . . , vn) is a Hamilton cycle, for any

H ∈ conn(G − U), there must be some i for which vi ∈ V (H) and thus there must also be a largest

such i. Note that i ∈ [n − 1] since vn ∈ U and V (H) ∩ U = ∅. Now, since i is the largest index

for which vi ∈ V (H), we know that vi+1 /∈ V (H). Since H is a connected component of G − U and

{vi, vi+1} ∈ E, this means that vi+1 ∈ U (why?). Thus, f : conn(G− U)→ U is well-defined.

Now, suppose that H,R ∈ conn(G) have f(H) = f(R) = u ∈ U . Since (v1, . . . , vn) is a Hamilton

cycle, there is a unique i ∈ [n] for which u = vi. Then by definition, we must have vi−1 ∈ V (H)∩V (R),

and so H = R (why?). Thus f is an injection as desired.

Problem 5 (Bonus). Let G be a graph. For a subset A ⊆ V and a vertex v ∈ V , define degA(v) =∣∣{u ∈ A : {u, v} ∈ E}
∣∣. Consider the following algorithm whose input is a graph G = (V,E):

procedure BiPartition(G)

V0 ← V

V1 ← ∅
while there exists v ∈ Vi such that degV1−i

(v) < deg(v)/2 do

Vi ← Vi \ {v}
V1−i ← V1−i ∪ {v}

end while

return (V0, V1)

end procedure

Prove the following:

1. BiPartition(G) eventually terminates and returns a pair (V0, V1) where V = V0 t V1.

(Hint: Show the algorithm terminates after at most |E| iterations of the while loop)

2. If BiPartition(G) = (V0, V1), then G has at least |E|/2 edges between V0 and V1.

(Note: This yields a polynomial-time algorithm to find the subgraph in HW7(5))
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Solution. Throughout the following, for sets A,B ⊆ V with A ∩ B = ∅, let e[A,B] denote the

number of edges of G with one vertex in A and the other in B. Observe that

e[A,B] =
∑
v∈A

degB(v) =
∑
v∈B

degA(v).

1. For i ∈ {0, 1} and t ≥ 0, let V t
i denote the value of Vi after the t’th iteration of the while loop;

so V 0
0 = V and V 0

1 = ∅. We prove the following:

(a) V = V t
0 t V t

1 .

(b) If there is some v ∈ V t
i such that degV t

1−i
(v) < deg(v)/2, then e[V t+1

0 , V t+1
1 ] > e[V t

0 , V
t
1 ].

By item (b), we know that t ≤ e[V t
0 , V

t
1 ] ≤ |E|, so the algorithm must terminate after at most

|E| iterations of the while loop, and will thus return a pair (V0, V1) which is a partition of V by

item (a).

For item (a), this is trivially true for t = 0, so we proceed by induction on t. For t ≥ 1, we

know that there is some v ∈ V t−1
i for which V t

i = V t−1
i \ {v} and V t

1−i = V t
1−i ∪ {v}. Since

V = V t−1
0 t V t−1

1 by the induction hypothesis, this implies that V = V t
0 t V t

1 .

Now for item (b). By relabeling if necessary, we may suppose that v ∈ V t
0 ; thus V t+1

0 = V t
0 \{v}

and V t+1
1 = V t

1∪{v}. Since V = V t
0tV t

1 by item (a), we know that deg(v) = degV t
0
(v)+degV t

1
(v);

in particular, since degV t
1
(v) < deg(v)/2, we see that degV t

0
(v) > degV t

1
(v). Finally, since

V = V t
0 t V t

1 = V t+1
0 t V t+1

1 , we can now calculate

e[V t
0 , V

t
1 ] =

∑
u∈V t

0

degV t
1
(u) = degV t

1
(v) + e[V t

0 \ {v}, V t
1 ]

< degV t
0
(v) + e[V t

0 \ {v}, V t
1 ] = degV t+1

0
(v) + e[V t+1

0 , V t+1
1 \ {v}]

= degV t+1
0

(v) +
∑

u∈V t+1
1 \{v}

degV t+1
0

(u) = e[V t+1
0 , V t+1

1 ].

2. If BiPartition(G) = (V0, V1), then we know that for each i ∈ {0, 1} and each v ∈ Vi, we must

have degV1−i
(v) ≥ deg(v)/2. Since V = V0 t V1, we find that

2e[V0, V1] =
∑
v∈V0

degV1
(v) +

∑
v∈V1

degV0
(v) ≥

∑
v∈V

deg(v)

2
= |E|,

so e[V0, V1] ≥ |E|/2.
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