Discrete Math Quiz #12 Solutions Apr 14

These solutions are from http://math.cmu.edu/~cocox/teaching/discrete20/quizl2sol.pdf

Problem 1. Prove that GG is a connected, 2-regular graph if and only if G is a cycle.

Solution. Certainly every cycle is connected and 2-regular, so we need only show the “only if”

direction.
By HW8(5a), we know that G has a cycle (vy,...,v;). Since G is 2-regular, we observe that there
cannot be any additional edges among vy, ..., v;. Hence, if V = {v1,..., v}, then G is a cycle.

Suppose this is not the case; that is, V' \ {v1,...,vx} # @. Since G is connected, we know that
there must be an edges between {v1,...,v;} and V' \ {vi,...,v}; suppose such an edge is {v;,u}.
But then vj_1,vj41,u are distinct vertices adjacent to vj, meaning deg(v;) > 3; a contradiction. [J

Problem 2. There are n > 3 participants in an event. Each of these participants know at least n/2
other participants. Show that there is a way to seat the participants around a circular table so that
each participant knows both people seated next to them.

Solution. Build a graph G = (V| E) where V is the set of participants and for u # v € V, {u,v} € E
if uw and v know one another. By assumption, G is a graph on n > 3 vertices and 6(G) > n/2. Dirac’s
theorem then tells us that G has a Hamilton cycle. Thus, seating the participants around the table
in the order that they’re visited by such a Hamilton cycle yields a valid arrangement. O

Problem 3. Let G be any graph. A cycle decomposition of G is a collection of cycles C1, ..., C}) that
partition the edge-set of G; that is E = |_|f:1 E(C;). Note that in a cycle decomposition, the cycles
can share vertices, but they cannot share edges.

Show that G has a cycle decomposition if and only if every vertex of G has even degree.

Solution. Suppose that G has a cycle decomposition Ci, ..., . Fix any vertex v € V and let
E, ={e € E :v € e}. Observe that for any i € [k], |E, N E(C;)| € {0,2}. Hence, since Cy,...,Cy
form a partition of F, we have

deg(v) = |Ey| = Z|E NE(C

which is even.

Now, suppose that every vertex of G has even degree. We prove that G has a cycle decomposition
by induction on the number of edges of G. Observe that if |E| = 0, then this is vacuously true, so
suppose that |E| > 1.

We can decompose G into its connected components G = G1 U --- U Gy, so G; is connected and
the G;’s are vertex disjoint. Since |E| > 1, by relabeling the G;’s if necessary, we may suppose that
|E(G1)| > 1; in particular, deg(v) > 1 for all v € V(G1) (why?). By assumption, each vertex of G
has even degree, so in fact deg(v) > 2 for all v € V(G;). Hence, thanks to HW8(5a), we know that
G'1 has a cycle; call it Cf.


http://math.cmu.edu/~cocox/teaching/discrete20/quiz12sol.pdf

Form a new graph G’ by deleting the edges of Cy from G. Since every v € V is incident to either
0 or 2 edges in C7, we see that every vertex of G’ also has even degree. Furthermore, |E(G’')| =
|E| — |E(C1)| < |E|, so by induction we can find a cycle decomposition of G’, call it Cs,...,Cy
(note that this may be empty if G’ is the empty graph). By construction, F = E(G’) U E(C4), so
E= |_|f:1 E(C;). In other words, C1,...,Cy is a cycle decomposition of G. O

Problem 4. Let G be a graph. Let conn(G) denote the set of connected components of G (e.g.

conn(G) = {G} if and only if G is connected). For a subset U C V, let G — U denote the graph

formed by deleting the vertices in U from G: formally, V(G—U) =V \U and E(G—-U) = EN (V;U).
Show that if G’ is Hamiltonian, then | conn(G — U)| < |U| for all non-empty U C V.

Solution. Let U C V be a non-empty subset of the vertices. If U = V, then conn(G — U) = &,
which certainly satisfies the condition, so suppose that U C V.

Fix any Hamilton cycle (vy,...,v,); without loss of generality, we may suppose that v, € U. For
H € conn(G — U), let i be the largest index for which v; € V/(H) and define f(H) = v;+1. We claim
that f is an injection from conn(G — U) to U, which will imply the claim.

Firstly, we must argue that f is well-defined. Since (vi,...,v,) is a Hamilton cycle, for any
H € conn(G — U), there must be some i for which v; € V(H) and thus there must also be a largest
such 7. Note that ¢ € [n — 1] since v,, € U and V(H) N U = @. Now, since i is the largest index
for which v; € V(H), we know that v;1; ¢ V(H). Since H is a connected component of G — U and
{vi,vit1} € E, this means that v;1; € U (why?). Thus, f: conn(G — U) — U is well-defined.

Now, suppose that H, R € conn(G) have f(H) = f(R) =u € U. Since (v1,...,v,) is a Hamilton
cycle, there is a unique 7 € [n] for which u = v;. Then by definition, we must have v;_; € V(H)NV(R),
and so H = R (why?). Thus f is an injection as desired. O

Problem 5 (Bonus). Let G be a graph. For a subset A C V and a vertex v € V, define degy(v) =
|{u € A:{u,v} € E}|. Consider the following algorithm whose input is a graph G = (V, E):
procedure BIPARTITION(G)
Vo<V
Vi< o
while there exists v € V; such that degy, .(v) < deg(v)/2 do
Vi Vi\{v}
Viei < ViciU{v}
end while
return (Vp, V1)
end procedure

Prove the following:

1. BIPARTITION(G) eventually terminates and returns a pair (Vp, V1) where V = V5 U V].

(Hint: Show the algorithm terminates after at most |E| iterations of the while loop)
2. If BIPARTITION(G) = (Vp, V1), then G has at least |E|/2 edges between Vj and V.

(Note: This yields a polynomial-time algorithm to find the subgraph in HW7(5))



Solution. Throughout the following, for sets A, B C V with AN B = &, let ¢[A, B] denote the
number of edges of G with one vertex in A and the other in B. Observe that

Z degp(v Z deg4(v

vEA vEB

1. For i € {0,1} and ¢ > 0, let V! denote the value of V; after the t’th iteration of the while loop;
so VY =V and V) = @. We prove the following:

(a) V=Viuvy.
(b) If there is some v € V! such that degy: (v) < deg(v)/2, then e[VIHH VI > e[V, V).
By item (b), we know that ¢ < e[V{, V{] <|E|, so the algorithm must terminate after at most

|E| iterations of the while loop, and will thus return a pair (Vj, V1) which is a partition of V' by
item (a).

For item (a), this is trivially true for ¢ = 0, so we proceed by induction on ¢. For t > 1, we
know that there is some v € V™! for which V} = V"1 \ {v} and V{_, = V{_, U {v}. Since
V = VIt u V! by the induction hypothesis, this implies that V = V§ U V{.

Now for item (b). By relabeling if necessary, we may suppose that v € V§; thus Vit = V¢ \ {v}
and V] = VIU{v}. Since V = VIUV} by item (a), we know that deg(v) = degVOt( )+degy (v);
in particular, since degy:(v) < deg(v)/2, we see that degye(v) > degyt(v). Finally, since
V =ViuVi =V UVt we can now calculate

e[Vg, Vi1 =) degyy(u) = degyy (v) + e[V \ {v}, V{]
uEVt

< dogyy(0) + e[V \ {0}, V] = degypns (o) + e[V, V1 o)
= degv(f“'l (U) + Z degv(;5+1 (u) — e[‘/bt‘f‘l’ ‘/']-t—l—l]'

uGVlH'l\{v}

2. If BIPARTITION(G) = (Vp, V1), then we know that for each i € {0,1} and each v € V;, we must
have degy, (v) > deg(v)/2. Since V' = Vu L Vi, we find that

2e[Vo, Vi] = ) degy, (v) + Y degyy(v) > > deg;v) = |E],

veVp veV veV

so e[Vp, V1] > |E|/2.



