
Discrete Math Quiz #13 Solutions Apr 21

These solutions are from http://math.cmu.edu/~cocox/teaching/discrete20/quiz13sol.pdf

Just so that there’s no confusion, every graph in this quiz is assumed to be simple. That is, graphs

cannot contain loops nor multiple edges between two vertices.

Problem 1. We say that a graph G = (V,E) is 2-edge-connected if G−e is connected for every e ∈ E.

Show that if G is a connected graph wherein each vertex has even degree, then G is 2-edge-connected.

Solution. Suppose for the sake of contradiction that there such a graph G which is not 2-edge-

connected. Let e ∈ E be such that G − e is not connected. Now, since G is connected and G − e is

not, we observe that G−e has exactly two connected components, call then G1, G2, where u ∈ V (G1)

and v ∈ V (G2) (why is this the case?).

Consider the graph G1. Observe that degG1
(u) = degG(u)− 1 and that for any w ∈ V (G1) \ {u},

degG1
(w) = degG(w). This, however, means that G1 has an odd number of odd-degree vertices, which

we know to be impossible.

Here’s an alternate proof: It is enough to show that for any U ⊆ V with U /∈ {∅, V }, G has at

least two edges between U and V \ U (why is this enough?).

Fix any such U . Since G is connected, there is an edge e ∈ E with one vertex in U and the other

in V \U . Suppose that U ∩e = {u}. Since G is connected and every vertex has even degree, G has an

Eulerian walk. We may suppose this walk starts at u and traverses the edge e first: label the edges

e = e1, e2, . . . , em in the order that they are traversed. Let i ∈ [m] be the largest index for which

ei \ U 6= ∅. We claim that ei is an edge between U and V \ U . Firstly, we know that u ∈ em, so if

i = m, then em is an edge between U and V \ U and we are done; thus suppose that i ≤ m− 1. But

now, by definition, we know that ei+1 ⊆ U , so since |ei ∩ ei+1| = 1, we see that ei has one vertex in

U and the other in V \ U , as needed.

Finally, observe that e2 \U 6= ∅, so we know that i ∈ {2, . . . ,m}. In particular, e1 and ei are two

distinct edges between U and V \ U .

Problem 2. Let T = (V,E) be a tree on at least 2 vertices. Let `(T ) denote the number of leaves of

T . Prove that

`(T ) = 2 +
∑
v∈V :

deg(v)≥2

(
deg(v)− 2

)
.

Solution. Since T is a tree, we know that |E| = |V | − 1. In other words,

1 = |V | − |E| = |V | − 1

2

∑
v∈V

deg(v) =
1

2

∑
v∈V

(
2− deg(v)

)
=

1

2

(
`(T ) +

∑
v∈V :

deg(v)≥2

(
2− deg(v)

))
,

which is equivalent to what we wanted to show.
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Problem 3. Does there exist a planar graph G which is both triangle-free and has δ(G) ≥ 4?

Solution. No, such a graph does not exist.

Suppose for the sake of contradiction that such a graph G did exist. We first observe that we

may suppose that G is connected. Indeed, if G were not connected, then we may decompose G into

its connected components, each of which would, in turn, be a connected, planar, triangle-free graph

with minimum degree at least 4. Hence, if no such connected graph exists, then no such graph exists

at all.

Fix any embedding of G into the plane and let F denote the set of faces of G in this embedding.

For f ∈ F , let `(f) denote the length of the face f . Since δ(G) ≥ 4, we know that G is not just a

single edge, so since G is triangle-free, we must have `(f) ≥ 4 for all f ∈ F .

Now, applying the handshaking lemma, we find that

2|E| =
∑
v∈V

deg(v) ≥ 4|V | and 2|E| =
∑
f∈F

`(f) ≥ 4|F |.

Since G is planar and connected, Euler’s theorem implies

2 = |V |+ |F | − |E| ≤ 1

2
|E|+ 1

2
|E| − |E| = 0;

a contradiction.

Problem 4. Let G be a planar graph on n vertices. Prove that G has at most 3n edges.

Solution. We suppose first that G is connected. Fix any embedding of G into the plane and let F

denote the set of faces of G in this embedding. For f ∈ F , let `(f) denote the length of the face f .

If G is just a single edge, then the claim certainly holds, so we may suppose that G has at least

two edges (and at least three vertices). Now, since G does not have multiple edges between any

pair of vertices, this implies that every f ∈ F has `(f) ≥ 3. Hence, by the handshaking lemma,

2|E| =
∑

f∈F `(f) ≥ 3|F |.
Since G is planar and connected, Euler’s formula tells us that

2 = |V |+ |F | − |E| ≤ n+
2

3
|E| − |E| = n− 1

3
|E| =⇒ |E| ≤ 3n− 6 ≤ 3n.

Lastly, let G be any planar graph on n vertices. Decomposing G = G1∪· · ·∪Gk into its connected

components and applying the previous fact, we have

|E| =
k∑

i=1

|E(Gi)| ≤
k∑

i=1

3|V (Gi)| = 3n.

Problem 5 (Bonus). For a positive integer k and a graph G = (V,E), a coloring χ : V → [k] is called

a proper k-coloring if χ(u) 6= χ(v) whenever {u, v} ∈ E (i.e. adjacent vertices get different colors).

Prove that every triangle-free planar graph has a proper 4-coloring. (This is a special case of the

famous four color theorem)
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Solution. Suppose this is false. Since the property of being triangle-free and planar is preserved

under taking subgraphs, we can consider a minimal counterexample to the claim; call it G. That is,

G does not have a proper 4-coloring, but every proper subgraph of G does.

Let v ∈ V and suppose for the sake of contradiction that deg(v) ≤ 3. Let G′ = G − v (the

graph formed by deleting v and its incident edges). Since G′ is a proper subgraph of G, there is

a proper 4-coloring χ′ : V (G′) → [4]. Now, we observe that |{χ′(u) : {u, v} ∈ E}| ≤ deg(v) ≤ 3;

hence, let χ : V → [4] be the coloring where χ(u) = χ′(u) for all u ∈ V \ {v}, and χ(v) is any color

in [4] \ {χ(u) : {u, v} ∈ E}. It is clear that χ is a proper 4-coloring of G, contradicting our original

assumption.

Therefore, G is planar, triangle-free and has δ(G) ≥ 4. However, Problem 3 tells us that such a

graph does not exist; i.e. every triangle-free planar graph has a proper 4-coloring.
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