
Discrete Math Quiz #14 Solutions Apr 28

These solutions are from http://math.cmu.edu/~cocox/teaching/discrete20/quiz14sol.pdf

Problem 1. Let G = (V,E) be a connected graph and let f : V → X be any function (where X is

any arbitrary set). Prove that either f is a constant function (i.e. |f(V )| = 1) or that there is an edge

{u, v} ∈ E where f(u) 6= f(v). Show also that the connectivity assumption is crucial.

(Note: This fact pops up time and time again, so it’s worth keeping in mind!)

Solution. Firstly, it is important that G is connected. If G is not connected, then there is some

U ⊆ V with both U 6= ∅ and V \ U 6= ∅ so that G has no edges between U and V \ U . We could

then have the function f : V → {1, 2} where f(v) = 1 if v ∈ U and f(v) = 2 otherwise. Then f is

neither the constant function, nor is there any edge {u, v} ∈ E for which f(u) 6= f(v).

Here are two solutions, each using a different definition of connectivity.

Solution 1. Suppose that f is not a constant function; thus |f(V )| ≥ 2. Fix any x ∈ f(V ) and

define U = {u ∈ V : f(u) = x}. Since x ∈ f(V ), we know that U 6= ∅ and since f(V ) 6= {x}, we

know that V \ U 6= ∅. Since G is connected, there must be an edge between U and V \ U ; suppose

this edge is {u, v} ∈ E where u ∈ U and v ∈ V \U . Then, by definition, f(u) = x 6= f(v) as needed.

Solution 2. Suppose that f is not a constant function; thus there are u, v ∈ V with f(u) 6= f(v).

Since G is connected, there must be a path (u = x1, x2, . . . , xk = v) where {xi, xi+1} ∈ E for all

i ∈ [k − 1]. Let ` ∈ [k] be the largest index for which f(x`) = f(u); note that ` is well-defined

since f(x1) = f(u). Furthermore, observe that ` ∈ [k − 1] since f(xk) = f(v) 6= f(u). In particular,

f(x`+1) 6= f(u) = f(x`) and so {x`, x`+1} ∈ E and f(x`) 6= f(x`+1) as needed.

Problem 2. Let G = (V,E) be a connected graph and let S be any subset of E which does not

contain a cycle. Prove that G has a spanning tree which uses every edge of S. In other words, any

acyclic set of edges can be extended to a spanning tree.

Solution. Let H denote the set of all connected subgraphs H of G with V (H) = V and E(H) ⊇ S.

Observe that H 6= ∅ since G ∈ H. Fix any H ∈ H with the minimum number of edges, which is

possible since G has finitely many edges. Certainly H contains every edge of S by definition; we

claim that H is a spanning tree. Indeed, H is connected by definition, so we need to argue that H is

acyclic.

Suppose not, so H has a cycle C. Since S is acyclic, there must be some e ∈ E(C) \ S. Now,

e ∈ E(H) is in a cycle and H is connected, so H ′ = H−e is also connected. However, by construction,

H ′ ∈ H and |E(H ′)| = |E(H)| − 1; contradicting the minimality of H.

Problem 3. Let T, F be trees on the same vertex set. For any edge e ∈ E(T ) \E(F ), we know that

F + e contains a unique cycle: call this cycle Ce. Prove that

E(F ) \ E(T ) ⊆
⋃

e∈E(T )\E(F )

E(Ce).

Solution. Fix any f ∈ E(F ) \ E(T ). Since F is a tree, we know that F − f is not connected; i.e.

there is some U ⊆ V with U /∈ {∅, V } such that f is the only edge of F between U and V \U . Now,
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T is connected, so there is some e ∈ E(T ) which goes between U and V \ U . Of course, e /∈ E(F )

since f /∈ E(T ). We claim that f ∈ Ce, which will establish the claim.

Indeed, since e goes between U and V \ U and Ce is a cycle, there must be some s ∈ E(Ce) \ {e}
which also goes between U and V \U (why?). Since E(Ce) \ {e} ⊆ E(F ), this means that s ∈ E(F ).

But then we must have s = f ; in other words, f ∈ E(Ce).

Problem 4. Let G = (V,E) be a weighted graph with weight function w : E → R. Suppose that G

is connected and every edge has a distinct weight under w (i.e. w(e) 6= w(s) for all e 6= s ∈ E). Prove

that G has a unique minimum spanning tree.

Solution. Since G is connected, we know that G has a spanning tree; hence G must have a minimum

spanning tree since G has finitely many edges. Hence, we need only focus on proving that such a

spanning tree is unique.

Suppose not, then there are two distinct minimum spanning trees T1, T2 of G. Since T1 6= T2, we

see that E(T1)4E(T2) 6= ∅; hence let e∗ denote the edge in E(T1)4E(T2) with smallest weight. By

relabeling if necessary, we may suppose that e∗ ∈ E(T1). Consider the graph T2 + e∗; since T2 is a

spanning tree and e∗ /∈ E(T2), T2+e∗ must contain a cycle C. Furthermore, we must have e∗ ∈ E(C).

Now, since T1 is a tree, C cannot be a subgraph of T1 and so there is some e∗∗ ∈ E(C)\E(T1). Observe

that e∗∗ ∈ T2 and that T2 − e∗∗ + e∗ is a spanning tree of G. Since every edge has a distinct weight

and e∗∗ ∈ E(T2) \E(T1) ⊆ E(T1)4E(T2), we know that w(e∗) < w(e∗∗). But then, T2 − e∗∗ + e∗ is a

spanning tree of G with

w(T2 − e∗∗ + e∗) = w(T2)− w(e∗∗) + w(e∗) < w(T2);

contradicting the fact that T2 is a minimum spanning tree.
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