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Today we will consider inequalities that can be proved by considering both bounds on the value of a

random variable X along with bounds on EX.

Let [k]≤n be the collection of all words of length at most n coming from [k] and let [k]<∞ be the collection

of all finite k-ary words. For a word w ∈ [k]<∞, we use `(w) to denote the length of the word. Let m < n,

w ∈ [k]m and w′ ∈ [k]n. We say that w is a prefix of w′ if w′ agrees with w on the first m digits. A family

F ⊆ [k]<∞ is said to be prefix-free if it contains no pair of words where one is a prefix of the other. We

would like to get some information about the size of a prefix-free family; however, that is not immediately

possible as a prefix-free family can easily have infinite size. Instead, we will prove a density-type argument,

which will then give us a bound on its size if we bound the length of the words.

Claim 1. Let F ⊆ [k]<∞ be a prefix-free family. If Fi = {w ∈ F : `(w) = i}, then∑
i≥0

|Fi|
ki
≤ 1.

Proof. As F need not have a uniform bound on the sizes of its elements, we would like to start by uniformly

generating an infinite binary string; unfortunately, though, this is impossible. As such, we will show that

for every n ∈ Z+,
∑n
i=0 |Fi|/2i ≤ 1, from which the claim will follow by taking the limit as n→∞. Fix

any n ∈ Z+ and uniformly at random select w ∈ [k]n. For u ∈ F , let Xu be the random variable which is 1

if u is a prefix of w and 0 otherwise. Also, let X =
∑
u∈F Xu, i.e. X is the number of prefixes of w that F

contains (note that X is always finite as only finitely many of the Xu’s can be nonzero). We first argue that

X ≤ 1. To see this, certainly if u and u′ are both prefixes of w, then either u is a prefix of u′ or vice versa;

in either case F can contain at most one, so X ≤ 1. Of course, as X ≤ 1, it is also the case that EX ≤ 1.

On the other hand for u ∈ [k]≤n, EXu = Pr[u is a prefix of w] = k−`(u) and for u ∈ [k]>n, EXu = 0. Hence,

by linearity of expectation,

1 ≥ EX =
∑

u∈
⋃n

i=0 Fi

EXu =
∑

u∈
⋃n

i=0 Fi

1

k`(u)
=

n∑
i=0

|Fi|
ki

.

�

Corollary 2. If F ⊆ [k]≤n is prefix-free, then |F| ≤ kn. This is tight.

Proof. As F ⊆ [k]≤n, we have that |Fi| = 0 for all i > n. Hence, by Claim 1, we have that

1 ≥
∑
i≥0

|Fi|
ki

=

n∑
i=0

|Fi|
ki
≥

n∑
i=0

|Fi|
kn

=
|F|
kn

,

from which the claim follows. This bound is achievable by taking F = [k]n, which is clearly prefix-free and

has size kn. �

For sets A,B, we say that A and B are comparable if either A ( B or B ( A. A family F of sets is said to

be an antichain if no pair of sets in F are comparable. For example, a collection of (finite) sets all having

the same size is an antichain. One of the most basic questions to ask is how large an antichain can be if we

only take subsets of [n].

Theorem 3 (Sperner’s Theorem). If F ⊆ 2[n] is an antichain, then |F| ≤
(

n
bn/2c

)
. This is tight.
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Proof. Fix an antichain F in 2[n]. Uniformly select a permutation σ of [n] and consider the chain of subsets

∅, {σ(1)}, {σ(1), σ(2)}, {σ(1), σ(2), σ(3)}, . . . , {σ(1), . . . , σ(n− 1)}, [n].

In other words, σ is telling you which element to add in at the ith step. Denote the chain of subsets

generated by σ by Cσ. For a set A ∈ F , let XA be the random variable which is 1 if A ∈ Cσ and 0 otherwise.

Also define X =
∑
A∈F XA, so X is precisely |F ∩ Cσ|. To begin, we note that X ≤ 1 as if |F ∩ Cσ| ≥ 2,

then as every pair of elements of Cσ is comparable, it must be the case that F would contain some A,B for

which A ⊂ B, which is impossible by the fact that F is an antichain. As X ≤ 1, we also have the EX ≤ 1.

Now, for a given A ∈ F , EXA = Pr[A ∈ Cσ] = |A|!(n−|A|)!
n! = 1/

(
n
|A|
)
. Hence, by linearity of expectation,

1 ≥ EX =
∑
A∈F

EXA =
∑
A∈F

1(
n
|A|
) ≥ ∑

A∈F

1(
n
bn/2c

) =
|F|(
n
bn/2c

) ,
from which the claim follows.

The bound is achievable by taking F =
(

[n]
bn/2c

)
, which is clearly an antichain and has size

(
n
bn/2c

)
. �

Let us now look at another interesting family of sets. Let F = {(A1, B1), . . . , (Ak, Bk)} ⊆
(
2[n]
)2

be a

family with the following properties:

(1) For all i ∈ [k], Ai ∩Bi = ∅,

(2) For all i 6= j ∈ [k], Ai ∩Bj 6= ∅.

We will refer to such a family as crossing.

Claim 4. If F is a crossing family, then ∑
(A,B)∈F

1(|A|+|B|
|A|

) ≤ 1.

Proof. For a permutation σ of [n] and subsets A,B, we say that A ≺σ B if all of the elements of A preceed

all of the elements of B under the order given by σ. We will say that ∅ ≺σ A for all nonempty A and

permutations σ, though it is not too important. Now choose a permutation σ of [n] uniformly at random

and for (A,B) ∈ F , let XA,B be the random variable which is 1 if A ≺σ B and 0 otherwise. Also, let

X =
∑

(A,B)∈F XA,B , so X is the number of pairs (A,B) which are nicely ordered under σ. We begin by

claiming that X ≤ 1. To see this, suppose that there were (A,B) 6= (A′, B′) ∈ F such that A ≺σ B and

A′ ≺σ B′. As F is crossing, there is some x ∈ A ∩B′ and some y ∈ A′ ∩B. As x ∈ A and y ∈ B, we must

have σ(x) < σ(y); however, as x ∈ B′ and y ∈ A′, we must also have σ(y) < σ(x), which is impossible.

Hence, X ≤ 1, so we also have that EX ≤ 1.
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On the other hand, as F is crossing (hence, if (A,B) ∈ F , then A ∩B = ∅),

EXA,B = Pr[A ≺σ B]

=
# of ways to have the elements of A preceed those of B

n!

=

(
n

|A|+|B|
)
|A|!|B|!(n− |A| − |B|)!

n!

=
|A|!|B|!

(|A|+ |B|)!

=
1(|A|+|B|
|A|

) .
Hence, by linearity of expectation,

1 ≥ EX =
∑

(A,B)∈F

EXA,B =
∑

(A,B)∈F

1(|A|+|B|
|A|

) .
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