Discrete Math Recitation 11 Chris Cox

We will explore applications of the variance of a random variable X today. While knowing the expected

value of X is useful, this tells us nothing about the typical value of X. As a reminder,
Var(X) = E[(X — EX)?] = E[X?] —E[X]".

While the variance can be difficult to calculate, if X =", X, then we have a formula which can make life
easier; namely,
Var(X) = > (E[X;X;] - EX;EX).
,J

Chebyshev’s inequality. For any A > 0,

Pr [\X ~EX|> )\\/Var(X)} < %

The strength of Chebyshev’s inequality is that it tells us that a random variable doesn’t stray too far from

its mean.

Let’s start by proving something a bit silly. We know from Stirling’s formula that
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but let’s try to get a general (not asymptotic) lower bound by using probabilistic methods.

Claim 1.
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Proof. Consider selecting a subset S C [2n] uniformly at random; equivalently, independently for each

i € [2n] include z in S with probability 1/2. Now let X; be the random variable which is 1 if 7 € S and 0
otherwise and let X = |S|. Clearly X = Zfﬁl Xi, so EX =n. On the other hand, as each element was
added independently,
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otherwise.
Thereby, as X = Zle X; and EX; = 1/2,
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By Chebyshev’s inequality, we find that
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for all A > 0. In other words, for A = \/5,

Pr[|X —n| <n] >
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Now, as S was chosen uniformly at random,



Hence,
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from which the result follows. O
Claim 2. Let Gy, ...,G be graphs on the same vertex set each with m edges. There is a partition of the

vertices (A, B) such that for each i, G; has at least % — ¢y/m edges between A and B where ¢ is a constant

depending only on k.

Proof. Certainly we know that each of the G; has a partition of the vertices for which there are at least 3
edges crossing between the parts, but this partition need not be the same for each i. This is where we can

use variance to show that there is a partition that works for all i that almost has half of the edges crossing.

To begin, we will consider only a single graph G with m edges. Independently for each vertex, flip a fair
coin to decide whether the vertex is in A or B. Let X be the random variable which denotes the number of
edges crossing between A and B and for each e € E(G), let X, be 1 if e crosses between A and B and 0
otherwise. Of course, X = ZeeE(G) X.. In the homework, you verified that EX, = %, so EX = %. Now

let’s calculate Var(X).
We begin by noting that
E[X.X,] = Pr[e crosses and s crosses]
= Prfe crosses|s crosses| Pr[s crosses]

ife=s
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otherwise.

As such,
1 1 1 1 m
Var(X) = Z (E[XeXQ] - EXe]EXS) = Z <2 - 4> + Z <4 — 4) = Z
e,s€E(G) ecE(Q) e#s

By Chebyshev’s inequality, for any A > 0,

Pr UX—T;} >A\/ﬂ < %

so by taking only one side of the absolute value,
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Now that we have done this calculation, we return to the case of multiple graphs. Again partition the
common vertex set of G1,. .., G} as before and let X (9 be the random variable which denotes the number

of edges crossing between A and B in G;. As each X is distributed according to the X from earlier, we
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can apply the union bound to find,
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probability that every G; has at least 3 — cy/m edges crossing the partition. |

Choosing A > vk, this probability is strictly less than 1. Hence, for any ¢ > £, there is a positive

Let’s end our discussion of discrete probability with a fun little problem. A birthday cake starts with n lit
candles. Uniformly at random select a number k between 1 and n and blow out any k of the candles. Now
there are n — k candles lit, so uniformly at random select a number between 1 and n — k and blow out that
many candles. Repeat this process until all candles have been blown out. Let X, be the random variable
denoting how many turns it takes to blow out all n candles. What is EX,,? Naively, we would expect EX,,
to be logarithmic in n as at each stage, we expect to blow out around half the remaining candles. This
intuition is correct as we will see. Firstly, Xy = 0 always, so EXy = 0. X; =1 as we will always blow out
the only candle there, so EX; = 1. On the other hand, by the law of total probability, we can condition the
expected value on the outcome of the first selected number (let Y be the random variable denoting the
value of this number). We find that

EX, =1+ Y E[X,|Y =] Pr[Y =i
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Let’s make the guess that in general EX,, = H,,, which is reasonable as we expect EX,, to be logarithmic
and we have the above recurrence. Certainly EXy = Hy and EX; = H;, so suppose that EX; = H; for all
i <n. Then
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As such, it is the case that EX,, = H,, ~ logn as we predicted.



