
Discrete Math Recitation 11 Chris Cox

We will explore applications of the variance of a random variable X today. While knowing the expected

value of X is useful, this tells us nothing about the typical value of X. As a reminder,

Var(X) = E
[
(X − EX)2

]
= E

[
X2
]
− E

[
X
]2
.

While the variance can be difficult to calculate, if X =
∑

iXi, then we have a formula which can make life

easier; namely,

Var(X) =
∑
i,j

(
E[XiXj ]− EXiEXj

)
.

Chebyshev’s inequality. For any λ > 0,

Pr
[
|X − EX| ≥ λ

√
Var(X)

]
≤ 1

λ2
.

The strength of Chebyshev’s inequality is that it tells us that a random variable doesn’t stray too far from

its mean.

Let’s start by proving something a bit silly. We know from Stirling’s formula that(
2n

n

)
∼ 4n√

πn
,

but let’s try to get a general (not asymptotic) lower bound by using probabilistic methods.

Claim 1. (
2n

n

)
≥ 4n

4
√
n+ 2

Proof. Consider selecting a subset S ⊆ [2n] uniformly at random; equivalently, independently for each

i ∈ [2n] include x in S with probability 1/2. Now let Xi be the random variable which is 1 if i ∈ S and 0

otherwise and let X = |S|. Clearly X =
∑2n

i=1Xi, so EX = n. On the other hand, as each element was

added independently,

E[XiXj ] =

 1
2 if i = j

1
4 otherwise.

Thereby, as X =
∑2n

i=1Xi and EXi = 1/2,

Var(X) =
∑

i,j∈[2n]

(E[XiXj ]− EXiEXj) =

2n∑
i=1

(
1

2
− 1

4

)
=
n

2
.

By Chebyshev’s inequality, we find that

Pr

[
|X − n| ≥ λ

√
n

2

]
≤ 1

λ2
.

for all λ > 0. In other words, for λ =
√

2,

Pr
[
|X − n| <

√
n
]
≥ 1

2
.

Now, as S was chosen uniformly at random,

Pr[X = k] =

(
2n

k

)
4−n.

1



2

Hence,

1

2
≤ Pr

[
|X − n| <

√
n
]

=
∑
|k|<
√
n

Pr[X = n+ k] =
∑
|k|<
√
n

(
2n

n+ k

)
4−n ≤ (2

√
n+ 1)

(
2n

n

)
4−n,

from which the result follows. �

Claim 2. Let G1, . . . , Gk be graphs on the same vertex set each with m edges. There is a partition of the

vertices (A,B) such that for each i, Gi has at least m
2 − c

√
m edges between A and B where c is a constant

depending only on k.

Proof. Certainly we know that each of the Gi has a partition of the vertices for which there are at least m
2

edges crossing between the parts, but this partition need not be the same for each i. This is where we can

use variance to show that there is a partition that works for all i that almost has half of the edges crossing.

To begin, we will consider only a single graph G with m edges. Independently for each vertex, flip a fair

coin to decide whether the vertex is in A or B. Let X be the random variable which denotes the number of

edges crossing between A and B and for each e ∈ E(G), let Xe be 1 if e crosses between A and B and 0

otherwise. Of course, X =
∑

e∈E(G)Xe. In the homework, you verified that EXe = 1
2 , so EX = m

2 . Now

let’s calculate Var(X).

We begin by noting that

E[XeXs] = Pr[e crosses and s crosses]

= Pr[e crosses|s crosses] Pr[s crosses]

=

 1
2 if e = s

1
4 otherwise.

As such,

Var(X) =
∑

e,s∈E(G)

(
E[XeXs]− EXeEXs

)
=

∑
e∈E(G)

(
1

2
− 1

4

)
+
∑
e 6=s

(
1

4
− 1

4

)
=
m

4
.

By Chebyshev’s inequality, for any λ > 0,

Pr

[∣∣∣X − m

2

∣∣∣ ≥ λ√m

4

]
≤ 1

λ2
,

so by taking only one side of the absolute value,

Pr

[
X ≤ m

2
− λ
√
m

4

]
≤ 1

λ2
.

Now that we have done this calculation, we return to the case of multiple graphs. Again partition the

common vertex set of G1, . . . , Gk as before and let X(i) be the random variable which denotes the number

of edges crossing between A and B in Gi. As each X(i) is distributed according to the X from earlier, we

can apply the union bound to find,

Pr

[
k∨

i=1

(
X(i) ≤ m

2
− λ
√
m

4

)]
≤

k∑
i=1

Pr

[
X(i) ≤ m

2
− λ
√
m

4

]

≤
k∑

i=1

1

λ2
=

k

λ2
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Choosing λ >
√
k, this probability is strictly less than 1. Hence, for any c >

√
k
2 , there is a positive

probability that every Gi has at least m
2 − c

√
m edges crossing the partition. �

Let’s end our discussion of discrete probability with a fun little problem. A birthday cake starts with n lit

candles. Uniformly at random select a number k between 1 and n and blow out any k of the candles. Now

there are n− k candles lit, so uniformly at random select a number between 1 and n− k and blow out that

many candles. Repeat this process until all candles have been blown out. Let Xn be the random variable

denoting how many turns it takes to blow out all n candles. What is EXn? Näıvely, we would expect EXn

to be logarithmic in n as at each stage, we expect to blow out around half the remaining candles. This

intuition is correct as we will see. Firstly, X0 = 0 always, so EX0 = 0. X1 = 1 as we will always blow out

the only candle there, so EX1 = 1. On the other hand, by the law of total probability, we can condition the

expected value on the outcome of the first selected number (let Y be the random variable denoting the

value of this number). We find that

EXn = 1 +

n∑
i=1

E[Xn|Y = i] Pr[Y = i]

= 1 +
1

n

n∑
i=1

EXn−i = 1 +
1

n

n−1∑
i=0

EXi.

Let’s make the guess that in general EXn = Hn, which is reasonable as we expect EXn to be logarithmic

and we have the above recurrence. Certainly EX0 = H0 and EX1 = H1, so suppose that EXi = Hi for all

i < n. Then

EXn = 1 +
1

n

n−1∑
i=0

EXi = 1 +
1

n

n−1∑
i=1

Hi

= 1 +
1

n

n−1∑
i=1

i∑
j=1

1

j
= 1 +

1

n

n−1∑
j=1

n− j
j

= 1 +

n−1∑
j=1

1

j
− n− 1

n
= Hn−1 +

1

n
= Hn.

As such, it is the case that EXn = Hn ∼ log n as we predicted.


