
Discrete Math Recitation 3 Chris Cox

Define the nth harmonic number to be Hn =
∑n

k=1
1
k . As we all know from calculus, Hn →∞ as n→∞,

but we would like to know more about its asymptotic growth.

Claim 1. For all n ≥ 2, log(n + 1) < Hn < log n + 1.

Proof. To show this, we will approximate
∫ n

1
dx
x . As 1/x is monotone decreasing for x > 0, we know that

the left endpoint Reimann sum upper bounds the integral and that the right endpoint Reimann sum lower

bounds it (see Figure 1). As such,∫ n

1

dx

x
< 1 +

1

2
+ · · ·+ 1

n− 1
= Hn−1,

so Hn >
∫ n+1

1
dx
x = log(n + 1). On the other hand,∫ n

1

dx

x
>

1

2
+

1

3
+ · · ·+ 1

n
= Hn − 1,

so Hn < log n + 1. �
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Figure 1. The approximations to the integral in Claim 1.

Claim 2. For all n ≥ 1, Hn > log(n + 1) + 1
2

n
n+1 .

Proof. To see this, we will again use the integral estimate of
∫ n+1

1
dx
x , but be slightly more careful. For

n ≥ 1, let Tn denote the triangle with vertices (n, 1
n ), (n + 1, 1

n ), (n + 1, 1
n+1 ). As 1/x is a convex function,

we observe that if n ≤ x ≤ n+ 1, then 1/x is bounded above by the line connecting (n, 1
n ) and (n+ 1, 1

n+1 ).

As such, ∫ n+1

1

dx

x
< Hn −

n∑
i=1

area(Ti).

The claim follows by noting that area(Ti) = 1
2

(
1
i −

1
i+1

)
, so

∑n
i=1 area(Ti) = 1

2
n

n+1 (which follows from

the fact that the sum is telescoping). �
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Claim 3. For any n ∈ Z+, n2n−1 =
∑

i i
(
n
i

)
.

Proof. We have already done a double counting proof of this identity, so we will now prove it by using the

binomial theorem. The binomial theorem tells us that for all z ∈ C, (1 + z)n =
∑

i

(
n
i

)
zi. Taking the

derivative of both sides (as the right hand side is a finite sum) yields n(1 + z)n−1 =
∑

i i
(
n
i

)
zi−1. The claim

follows by setting z = 1. �

Claim 4. Let En = {S ⊆ [n] : |S| ∈ 2Z} and On = {S ⊆ [n] : |S| ∈ 2Z + 1}, then |En| = |On| for all n ≥ 1.

Proof. There is a nice bijection between these sets, namely, if we fix any T ∈ On, then fT : S 7→ S4T is a

bijection (in fact, involution) from En to On.

As an alternate proof, note that |En| =
∑

i even

(
n
i

)
and |On| =

∑
i odd

(
n
i

)
. By the binomial theorem, we

observe that, as n ≥ 1,

0 = (1− 1)n =
∑
i

(−1)i
(
n

i

)
=
∑
i even

(
n

i

)
−
∑
i odd

(
n

i

)
= |En| − |On|,

so the claim follows. �


