
Discrete Math Recitation 4 Chris Cox

Problem 1. How many n-letter words coming from [m] use the letter 1 at least twice and each other letter

at least once?

Let B1 be the collection of words in [m]n that use 1 at most once and for i ∈ [2,m], let Bi be the collection

of words in [m]n that do not use i. It is easy to observe that
⋂

i∈[m]B
C
i is precisely the set that we wish to

count. For an index set S ⊆ [m], we find that∣∣∣∣∣⋂
i∈S

Bi

∣∣∣∣∣ =

(m− |S|)n if 1 /∈ S;

(m− |S|)n + n(m− |S|)n−1 if 1 ∈ S.

Therefore, by inclusion-exclusion, the number of words satisfying the desired property is∑
S⊆[m]

(−1)|S|

∣∣∣∣∣⋂
i∈S

Bi

∣∣∣∣∣ =
∑

S⊆[m]:
1/∈S

(−1)|S|(m− |S|)n +
∑

S⊆[m]:
1∈S

(−1)|S|
(
(m− |S|)n + n(m− |S|)n−1

)
=
∑

S⊆[m]

(−1)|S|(m− |S|)n +
∑

S⊆[m]:
1∈S

(−1)|S|n(m− |S|)n−1

=

m∑
i=0

(
m

i

)
(−1)i(m− i)n + n

m∑
i=1

(
m− 1

i− 1

)
(−1)i(m− i)n−1.

We now discuss an alternative proof for the number of derangements.

Theorem 2. Let Dn be the set of derangements of [n], then |Dn| =
∑n

k=0(−1)k n!
k! .

Proof. For convenience, let [n]k denote the set of k-letter words coming from [n] such that no letter is

repeated (hence |[n]k| = n!/(n− k)!). Define the function σ by σ(w) = (−1)n−k if w ∈ [n]k. Also, for a

word w, let F (w) be the smallest i such that either i does not appear in w or i is fixed in w (that is, the

ith letter in w is i). Of course, F is not defined for all words in
⋃n

k=0[n]k; but it is easy to observe that

{w ∈
⋃n

k=0[n]k : F (w) undefined} = Dn.

Now, consider the collection of words for which F is defined. Suppose that w is such that F (w) does not

appear in w, then define s(w) to be the word formed by inserting F (w) into its fixed position. Similarly, if

w is such that F (w) appears in w, then define s(w) to be the word formed by removing F (w) from w. For

example s(1354) = 354 and s(21456) = 213456. Notice that w and s(w) always differ in length by exactly

one ( so σ(w) = −σ(s(w))) and that s(s(w)) = w (i.e. it is an involution).

Define Qn =
∑

w∈
⋃n

k=0[n]k
σ(w); we will rewrite Qn in two different ways. Firstly,

Qn =

n∑
k=0

(−1)n−k|[n]k| =
n∑

k=0

(−1)n−k
n!

(n− k)!
=

n∑
k=0

(−1)k
n!

k!
.

On the other hand, we can pair up words based on the involution s, so

Qn =
∑
w:

F (w) undefined

σ(w) +
∑

{w,s(w)}

(σ(w) + σ(s(w)) = |Dn|.

Hence, |Dn| = Qn =
∑n

k=0(−1)k n!
k! . �
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Here is another proof of the principle of inclusion-exclusion using the same technique as above. In other

words, this technique can be used to approach any inclusion-exclusion-type problem.

Theorem 3. Let U be a finite set and let B1, . . . , Bn ⊆ U . Then∣∣∣∣∣U \
n⋃

i=1

Bi

∣∣∣∣∣ =
∑
S⊆[n]

(−1)|S|

∣∣∣∣∣⋂
i∈S

Bi

∣∣∣∣∣ .
Proof. Consider the following set B = {(x, S) ∈ U × [n] : x ∈

⋂
i∈S Bi}. In other words, B consists of pairs

of an index set S and an element of U that satisfies at least all the events indexed by S. Obviously, if we

fix a set T ⊆ [n], then |{x ∈ U : (x, T ) ∈ B}| =
∣∣⋂

i∈T Bi

∣∣. For a pair (x, S) ∈ B, define σ(x, S) = (−1)|S|.

Also, for any x ∈ U , define F (x) = min{i ∈ [n] : x ∈ Bi} and note that F (x) is undefined if and only if

x /∈ Bi for all i ∈ [n] (i.e. x ∈ U \
⋃n

i=1Bi). Additionally note that if x ∈ U \
⋃n

i=1Bi, then (x, S) ∈ B if

and only if S = ∅.

Now, if F (x) is defined, for any set index set S ⊆ [n], let s(x, S) = (x, S4F (x)). Notice that as x ∈ BF (x)

(by definition), we have that (x, S4F (x)) ∈ B. Further, s is an involution (as the symmetric difference is

an involution) and σ(x, S) = −σ(s(x, S)).

Let Q =
∑

(x,S)∈B σ(x, S); we will rewrite Q in two ways. Firstly,

Q =
∑
S⊆[n]

(−1)|S||{x : (x, S) ∈ B}| =
∑
S⊆[n]

(−1)|S|

∣∣∣∣∣⋂
i∈S

Bi

∣∣∣∣∣ .
On the other hand, we can pair up elements of B based on the involution s, so

Q =
∑

(x,S)∈B:
F (x) undefined

σ(x, S) +
∑

{(x,S),s(x,S)}

(σ(x, S) + σ(s(x, S))) =

∣∣∣∣∣U \
n⋃

i=1

Bi

∣∣∣∣∣ .
�

Personally, I prefer to use this matching-type argument over inclusion-exclusion as, in my opinion, it is

much more elegant. If you would like to practice this technique, here are a couple things to try to prove.

(1) For m ≤ n,

m∑
i=0

(−1)i
(
n

i

)
= (−1)m

(
n− 1

m

)
.

(2) For k < n,

n∑
i=0

(−1)i
(
n

i

)(
i

k

)
= 0.

(3) The number of surjections from [n]→ [m] is precisely

m∑
i=0

(−1)i
(
m

i

)
(m− i)n. Hint: consider pairs

(X,Y ) where X ⊆ [m] and Y ∈ ([m] \X)n.


