Discrete Math Recitation 4 Chris Cox

Problem 1. How many n-letter words coming from [m] use the letter 1 at least twice and each other letter

at least once?

Let B; be the collection of words in [m]™ that use 1 at most once and for i € [2,m], let B; be the collection
of words in [m]" that do not use i. It is easy to observe that (¢, BY is precisely the set that we wish to
count. For an index set S C [m], we find that
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Therefore, by inclusion-exclusion, the number of words satisfying the desired property is
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We now discuss an alternative proof for the number of derangements.

Theorem 2. Let D, be the set of derangements of [n], then |Dy| = 3 p_o(—1)F M.

Proof. For convenience, let [n]; denote the set of k-letter words coming from [n] such that no letter is
repeated (hence |[n]x| = n!/(n — k)!). Define the function o by o(w) = (—1)"~% if w € [n];. Also, for a
word w, let F'(w) be the smallest ¢ such that either i does not appear in w or i is fixed in w (that is, the
ith letter in w is i). Of course, F' is not defined for all words in [J;_[n]k; but it is easy to observe that
{w e Up_o[nlk : F(w) undefined} = D,,.

Now, consider the collection of words for which F' is defined. Suppose that w is such that F'(w) does not
appear in w, then define s(w) to be the word formed by inserting F(w) into its fixed position. Similarly, if
w is such that F'(w) appears in w, then define s(w) to be the word formed by removing F(w) from w. For
example s(1354) = 354 and $(21456) = 213456. Notice that w and s(w) always differ in length by exactly

one ( so o(w) = —o(s(w))) and that s(s(w)) = w (i.e. it is an involution).
Define Q,, = Zweu;’;_o[n]k o(w); we will rewrite @,, in two different ways. Firstly,
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On the other hand, we can pair up words based on the involution s, so
Qu=" > o)+ Y (ow)+o(s(w) =D
F(w) ulfl:deﬁned {w,s(w)}

Hence, |Dy| = Qn = 1o (—1)F 4. .



Here is another proof of the principle of inclusion-exclusion using the same technique as above. In other

words, this technique can be used to approach any inclusion-exclusion-type problem.

Theorem 3. Let U be a finite set and let By,...,B, CU. Then
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Proof. Consider the following set B = {(x,S) € U x [n] : € ;.4 Bi}. In other words, B consists of pairs
of an index set S and an element of U that satisfies at least all the events indexed by S. Obviously, if we
fix a set T C [n], then {z € U : (x,T) € B}| = |N;er Bi|- For a pair (z,5) € B, define o(x,S) = (—1)5l
Also, for any = € U, define F'(z) = min{i € [n] : € B;} and note that F(z) is undefined if and only if

z ¢ B; for all i € [n] (i.e. z € U\ U;—, B;). Additionally note that if z € U \ U], B;, then (z,S5) € B if
and only if S = (.

Now, if F(x) is defined, for any set index set S C [n], let s(z, S) = (x, SAF(x)). Notice that as 2 € Bp(,)
(by definition), we have that (x, SAF(z)) € B. Further, s is an involution (as the symmetric difference is
an involution) and o(z, S) = —o(s(z, 5)).

Let Q = E(m,s)eB o(x,S); we will rewrite @ in two ways. Firstly,

Q= (DF¥l{z:(@,8)eB) = (-1
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On the other hand, we can pair up elements of B based on the involution s, so
n
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(z,8)eB: {(z,S),s(z,S9)}
F(z) undefined

Personally, I prefer to use this matching-type argument over inclusion-exclusion as, in my opinion, it is

much more elegant. If you would like to practice this technique, here are a couple things to try to prove.

(1) For m < n, _m (—1)! (”) = (-1)™ <” - 1).

(2) For k < n, :O(l)i <7Z> <;> = 0.

(3) The number of surjections from [n] — [m] is precisely E (—1)* (m) (m —¢)". Hint: consider pairs
i
i=0
(X,Y) where X C [m] and Y € (m] \ X)™.



