Discrete Math Recitation 7 Chris Cox

As we know from earlier, if n > 6, then every 2-coloring of the edges of K, must admit a monochromatic
triangle. This yields the following very natural question: for any 2-coloring of the edges of K,,, how many

monochromatic triangles must there be?

Claim 1. Asymptotically in n, in any 2-coloring of the edges of K,,, at least 1/4 of the total number of

triangles are monochromatic.
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Proof. Keep in mind that the total number of triangles in K, is (g) ~ .

Let ¢ be any 2-coloring of the edges of K,, and let A denote the number of paths (u,v,w) such that

c(u,v) =1 and ¢(v,w) = 2 (i.e. the number red-blue paths of length 3). Additionally, for a vertex v, let
A(v) be the number of these red-blue paths such that v is the center vertex. As each red-blue path has a
unique center vertex, we observe that A=) . A(v). For i € [2], if we let deg;(v) be the number of
vertices connected to v by color 4, then we observe that A(v) = deg; (v) deg,(v) as we simply select any red

edge and blue edge incident to v.

We now notice that every triangle that is not monochromatic must have ezxactly two red-blue paths, so
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# of non-monochromatic triangles = §A.

Therefore,
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# of monochromatic triangles = ( > — # of non-monochromatic triangles

Now, as every edge must receive a unique color, we observe that for every v, deg; (v) + deg,(v) =n — 1.
Thus, as can be observed through simple calculus, ), deg,(v)degy(v) is maximized when

| deg; (v) — degy(v)| < 1 for all v (in other words, deg; (v) = [(n — 1)/2] and degy(v) = |(n — 1)/2] or vice
versa). Therefore,
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Hence, asymptotically, at least 1/4 of the triangles are monochromatic. O

Corollary 2. Any 2-coloring of the edges of Kg must have at least 2 monochromatic triangles.
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Proof. By the previous proof, we know that the number of monochromatic triangles in any 2-coloring of

the edges of K, must have at least (g) -3 {"T_l] V’T_lj monochromatic triangles. The corollary follows
from letting n = 6. ]
In a directed graph G, a directed path is a set of distinct vertices (v1,. .., vx) such that v; — v;4; for all

ielk—1].
The transitive tournament of order n, which we denote by T,,, is the directed graph on vertex set [n] where
i — j if and only if i < j.

Claim 3. Any t-coloring of the edges of T;, must have a monochromatic directed path of length at least
1/t

n
Proof. Let ¢ be any t-coloring of the edges of T,,. For i € [t] and a vertex v, define g;(v) to be the length of
the longest i-colored path ending at v. Additionally, let ¢(v) = (g1(v),...,q:(v)). Now suppose that v < u
are vertices of T,,, then if c¢(v,u) = 4, we observe that ¢;(v) + 1 < g;(u). In particular, for any vertices

v # u, q(v) # q(u) as these vectors differ in at least one component. Now, suppose that L is the length of
the longest monochromatic directed path, then we have ¢;(v) € [L] for all ¢ and v; hence, there are precisely
Lt choices for ¢(v). As the g(v)’s are all distinct and there are n vertices, we find that n < L, or L > n'/t

as claimed. O

Problem 4. Show that the above result is tight, i.e. there is a t-coloring of the edges of T;, where no
t

monochromatic directed path has length longer than n'/t.
Note that we made strong use of the fact that we were coloring a transitive tournament. If we happened to
be coloring a tournament with directed cycles, then the ¢(v)’s need not be distinct, so the argument falls
apart. This being said, it turns out that the above claim actually holds for any tournament, no matter how
many cycles. If we end up covering enough graph theory in this course, in particular talk about chromatic
numbers, then hopefully we will have time to prove this more general result as it is one of my absolute

favorites.

By applying the above claim, we arrive at the following well-known result.

Theorem 5 (Erdds-Szekeres Theorem). For any sequence of n distinct real numbers, there is a monotone

subsequence of length at least v/n.

Proof. Let ay,...,a, be a sequence of distinct real numbers; we will use these numbers to give a coloring of
the edges of T,. For i < j, let (i, j) =1 if a; < a; and let ¢(¢,j) = 2 if a; > a;. By the previous claim, we
know that there is a monochromatic path of length at least y/n. If this path is in color 1, then the terms
associated with the vertices form an increasing subsequence and if the path is in color 2, then the terms
associated with the vertices form a decreasing subsequence. In either case, we have a monotone

subsequence of length at least \/n. O



