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As we know from earlier, if n ≥ 6, then every 2-coloring of the edges of Kn must admit a monochromatic

triangle. This yields the following very natural question: for any 2-coloring of the edges of Kn, how many

monochromatic triangles must there be?

Claim 1. Asymptotically in n, in any 2-coloring of the edges of Kn, at least 1/4 of the total number of

triangles are monochromatic.

Proof. Keep in mind that the total number of triangles in Kn is
(
n
3

)
∼ n3

6 .

Let c be any 2-coloring of the edges of Kn and let A denote the number of paths (u, v, w) such that

c(u, v) = 1 and c(v, w) = 2 (i.e. the number red-blue paths of length 3). Additionally, for a vertex v, let

A(v) be the number of these red-blue paths such that v is the center vertex. As each red-blue path has a

unique center vertex, we observe that A =
∑

v∈V A(v). For i ∈ [2], if we let degi(v) be the number of

vertices connected to v by color i, then we observe that A(v) = deg1(v) deg2(v) as we simply select any red

edge and blue edge incident to v.

We now notice that every triangle that is not monochromatic must have exactly two red-blue paths, so

# of non-monochromatic triangles =
1

2
A.

Therefore,

# of monochromatic triangles =

(
n

3

)
−# of non-monochromatic triangles

=

(
n

3

)
− 1

2
A

=

(
n

3

)
− 1

2

∑
v∈V

deg1(v) deg2(v).

Now, as every edge must receive a unique color, we observe that for every v, deg1(v) + deg2(v) = n− 1.

Thus, as can be observed through simple calculus,
∑

v∈V deg1(v) deg2(v) is maximized when

|deg1(v)− deg2(v)| ≤ 1 for all v (in other words, deg1(v) = d(n− 1)/2e and deg2(v) = b(n− 1)/2c or vice

versa). Therefore,

# of monochromatic triangles =

(
n

3

)
− 1

2

∑
v∈V

deg1(v) deg2(v)

≥
(
n

3

)
− 1

2

∑
v∈V

⌈
n− 1

2

⌉⌊
n− 1

2

⌋

=

(
n

3

)
− 1

2
n

⌈
n− 1

2

⌉⌊
n− 1

2

⌋
∼ n3

6
− n3

8
=

n3

24
.

Hence, asymptotically, at least 1/4 of the triangles are monochromatic. �

Corollary 2. Any 2-coloring of the edges of K6 must have at least 2 monochromatic triangles.
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Proof. By the previous proof, we know that the number of monochromatic triangles in any 2-coloring of

the edges of Kn must have at least
(
n
3

)
− n

2

⌈
n−1
2

⌉ ⌊
n−1
2

⌋
monochromatic triangles. The corollary follows

from letting n = 6. �

In a directed graph G, a directed path is a set of distinct vertices (v1, . . . , vk) such that vi → vi+1 for all

i ∈ [k − 1].

The transitive tournament of order n, which we denote by Tn, is the directed graph on vertex set [n] where

i→ j if and only if i < j.

Claim 3. Any t-coloring of the edges of Tn must have a monochromatic directed path of length at least

n1/t.

Proof. Let c be any t-coloring of the edges of Tn. For i ∈ [t] and a vertex v, define qi(v) to be the length of

the longest i-colored path ending at v. Additionally, let q(v) = (q1(v), . . . , qt(v)). Now suppose that v < u

are vertices of Tn, then if c(v, u) = i, we observe that qi(v) + 1 ≤ qi(u). In particular, for any vertices

v 6= u, q(v) 6= q(u) as these vectors differ in at least one component. Now, suppose that L is the length of

the longest monochromatic directed path, then we have qi(v) ∈ [L] for all i and v; hence, there are precisely

Lt choices for q(v). As the q(v)’s are all distinct and there are n vertices, we find that n ≤ Lt, or L ≥ n1/t

as claimed. �

Problem 4. Show that the above result is tight, i.e. there is a t-coloring of the edges of Tn where no

monochromatic directed path has length longer than n1/t.

Note that we made strong use of the fact that we were coloring a transitive tournament. If we happened to

be coloring a tournament with directed cycles, then the q(v)’s need not be distinct, so the argument falls

apart. This being said, it turns out that the above claim actually holds for any tournament, no matter how

many cycles. If we end up covering enough graph theory in this course, in particular talk about chromatic

numbers, then hopefully we will have time to prove this more general result as it is one of my absolute

favorites.

By applying the above claim, we arrive at the following well-known result.

Theorem 5 (Erdős-Szekeres Theorem). For any sequence of n distinct real numbers, there is a monotone

subsequence of length at least
√
n.

Proof. Let a1, . . . , an be a sequence of distinct real numbers; we will use these numbers to give a coloring of

the edges of Tn. For i < j, let c(i, j) = 1 if ai < aj and let c(i, j) = 2 if ai > aj . By the previous claim, we

know that there is a monochromatic path of length at least
√
n. If this path is in color 1, then the terms

associated with the vertices form an increasing subsequence and if the path is in color 2, then the terms

associated with the vertices form a decreasing subsequence. In either case, we have a monotone

subsequence of length at least
√
n. �


