MATH 314 Dilworth’s Theorem Feb 22

These notes are from https://mathematicaster.org/teaching/graphs2022/dilworth.pdf

We proved two fundamental theorems about matchings in bipartite graphs:
Theorem 1 (Kénig’s Theorem). If G is a bipartite graph, then o/ (G) = B(G).

Theorem 2 (Hall’'s Theorem). If G is a bipartite graph with parts A, B, then G has a matching
which saturates A if and only if |N(S)| > |S| for all S C A.

We showed that Konig = Hall and Hall = Koénig, so, morally speaking, these are the same
theorem.!

These notes exist to discuss one more theorem which is equivalent to Kénig and Hall that, at a
first glance, seems to have nothing to do with graphs whatsoever. Instead, it is a statement about
partially-ordered sets.

Definition 3. Let P be a non-empty set. A partial-order on P is a relation = which satisfies three
properties:

o Reflerivity: x =< x for all x € P.
o Anti-symmetry: x |y N y=x = xz =y forall x,y € P.
o Transitivity: xt Sy N y=z = x 3z forall x,y,z € P.

So, partial-orders are similar to equivalence relations except we replace symmetry by anti-
sylrmnetry.2

A pair (P,=) where < is a partial-order on P is known as a partially-ordered set or a poset.
When the partial-order is understood, we simply write P in place of (P, =). In general, for any non-
empty set P, there are tons of partial-orders on P; usually we just care about those partial-orders
which “make sense” given the nature of the set P.

Note that R with the usual notion of < is a poset. Another common example is the set of all
subsets of some fixed set, which is a poset under the partial-order C. Other examples include N
with the relation z < y iff z | y. In general, for any non-empty set P, we can build the “trivial”
poset (P, <) where x <y <= x =y, but this is generally far from interesting.

Definition 4. Let (P, =) be a poset.

o Forx,y € P, we say that x and y are comparable if x <y or y < x. Otherwise we say that
x and y are incomparable. Note that x is always comparable to itself.

o A subset C' C P is called a chain if every pair of elements of C are comparable.

! Any logicians in the audience will (correctly) reply “Duh; all true theorems are equivalent”. This is certainly
true... I mean that each can be “directly” derived from the other (hence my use of the term “morally speaking”).
This is definitely not a rigorous statement (nor am I aware of any way to make such a statement rigorous), but
hopefully you get the point.

2This is completely besides the point, but it’s a dumb joke that I like to make. Love fails all three conditions to
be an equivalence relation: you may not love yourself; if you love someone, then they may very well not love you
back; if you love someone and they love someone else, then there’s a good chance that don’t love that someone else!
Furthermore, we better damn well hope that love is not a partial order! Indeed, if love were a partial order, then if
you love someone (other than yourself), then they will never love you back...


https://mathematicaster.org/teaching/graphs2022/dilworth.pdf

o A subset A C P is called an anti-chain if every pair of distinct elements of A are incomparable.
Note that a single-element subset is both a chain and an anti-chain.

Definition 5. Let P be a poset.
e The height of P, denoted by h(P), is the size of a largest chain in P.

e The width of P, denoted by w(P), is the size of a largest anti-chain in P.

e A chain-cover of P is a partition P = Cy U --- U Cy where each C; is a chain in P. The
chain-cover-number of P, denoted by c¢(P), is the smallest k for which there is a chain-cover
using k chains.

e An anti-chain-cover of P is a partition P = Ay U --- U Ay where each A; is an anti-chain in
P. The anti-chain-cover-number of P, denoted by a(P), is the smallest k for which there is
an anti-chain-cover using k anti-chains.
As a quick example, if P = (2[", C), then h(P) = n + 1 as witnessed by the chain
{@,{1},{1,2},...,{1,2,...,n}} (why can’t there be a larger chain?). Furthermore, w(P) = (Ln7/l?J)
as witnessed by the anti-chain ( ] ) (it is non-trivial that this is actually the largest anti-chain;

[n/2] ‘
this result is known as Sperner’s theorem?).

Dilworth’s Theorem relates these four parameters.
We begin with a simple observation:

Lemma 6. Let P be a poset. If C is a chain in P and A is an anti-chain in P, then |[ANC| < 1.

Proof. If |[ANC| > 2, then we could find x # y € ANC. Since z,y € C, we know that z and y are
comparable. But then x and y would be distinct elements of A which are comparable, so A cannot
be an anti-chain. O

From here, we can start to relate the four parameters of a poset.
Lemma 7. Let P be a finite poset. Then h(P) < a(P) and w(P) < ¢(P).

Proof. We prove first that h(P) < a(P). Let C be a largest chain in P (so |C| = h(P)) and let
P =A;U---UAg be a smallest anti-chain-cover of P (so k = a(P)). Then Lemma 6 implies that

=|C| = ZyCmA|<Zl_k_a

The proof that w(P) < ¢(P) is similar. Let A be a largest anti-chain in P (so |A| = w(P)) and
let P=CyU---UCy be asmallest chain-cover of P (so k = ¢(P)). Then Lemma 6 implies that

k k
=> ANC; <> 1=k=cP). O
=1 =1

The cool thing is that A(P) = a(P) and w(P) = ¢(P) for any finite poset P, which is Dilworth’s
theorem. Well, really Dilworth’s theorem is just that w(P) = ¢(P). This is because the fact that
h(P) = a(P) is “easy”; hence, I'll call this result “Dumb-Dilworth”. Let’s prove it quickly!

3There are many proofs of Sperner’s theorem, the best of which (IMHO) invoke random variables in some way.
However, one can also use HW10.4 along with some extra effort to prove this. I'm not 100% sure, but I believe
Sperner’s original proof followed along these lines laid out in HW10.4 in order to create a notion of “compression”.



Theorem 8 (Dumb-Dilworth). If (P, <) is a finite poset, then h(P) = a(P).

Proof. We already showed that h(P) < a(P), so we just need to show that a(P) < h(P). We do
so by constructing an anti-chain cover of P using at most h(P) many anti-chains.
Fix any € P and a chain C' C P. We say that the chain C' ends at x if

e x €(C, and

e Forany y € C, y < x.

Let h(x) denote the size of a largest chain which ends at . We claim that h(z) € [h(P)] for all
x € P. Indeed, we know that h(z) > 1 since {z} is a chain which ends at . Additionally, we know
that h(x) < h(P) since h(P) is the size of a largest chain in P.
For each i € [h(P)], we define A; = {x € P: h(z) = i}.* By the previous observation, we know
that
P:A1|_|--'|_|Ah(p),

thus we will have proved the claim if we can show that each A; is an anti-chain.

Suppose for the sake of contradiction that A; is not an anti-chain; thus there is some x # y € A;
that are comparable. Without loss of generality, z < y.

Let C be a largest chain which ends at z, so |C| = h(z). If y € C, then y < x and so x = y
due to anti-symmetry; a contradiction. Thus, consider ¢’ = C' U {y}, which has size h(z) + 1. We
claim that C” is a chain which ends at y. Indeed, y € C’ by definition. Also, if z € C’, then

e z =y, in which case z < y due to reflexivity, or

e 2z # y, in which case z € C'. Then, since C is a chain which ends at x, we have z < z. Finally,
since z = y by assumption, due to transitivity, we must have z < y.

Thus, C’ is a chain which ends at y and so h(y) > |C'| = h(z) + 1 > h(x), which contradicts the
fact that h(z) = h(y) = i. O

Now we're ready for Dilworth’s actual theorem (note: this is highly non-trivial).
Theorem 9 (Dilworth’s Theorem). If (P, =) is a finite poset, then w(P) = ¢(P).

Proof. We have already shown that w(P) < ¢(P), so we just need to show that ¢(P) < w(P). We
do so by constructing a chain-cover of P using at most w(P) many chains. This is accomplished
via KoOnig’s theorem.

We start with two “copies” of the elements of P:

X={r":z€P}, and Y ={2zt:2¢€ P}

Note that the + is just notation to distinguish the elements of X and Y. We build a bipartite
graph G which has parts X and Y where z7y" € E(G) if and only if z < y (where < y means
x <yand z #vy).

Let R C V(@) be a minimum vertex-cover of G (so |R| = 8(G)). We use R to build an anti-chain
in P.

Claim 10. For every x € P, R contains at most one of x~ and x™.

4If you know a bit about posets, the A;’s are the level-sets of P.



Proof. Suppose that 2= and z™ are both members of R. Since R is a minimum vertex-cover of
G, we know that R\ {x~} cannot be a vertex-cover of G. In particular, there must be some edge
z~yt € E(G) where y* ¢ R. Similarly, R\ {z*} cannot be a vertex-cover of G, so there must be
some edge z~ 2" € E(G) where 2~ ¢ R. By definition, we have 2 < x and z < y, so z < y due
to transitivity. Since edges of the form w~w™ never exist in G, we actually must have y # z since
otherwise anti-symmetry would imply that z =y = z.

This, however, means that z < y and so z~y" € F(G). But, neither 2~ nor y* are elements of
R, so R does not cover the edge 2~y™; a contradiction. O

Now, define A={z e P: Rn{z",zt} = o}.
Claim 11. A is an anti-chain in P and |A| = |P| — B(G).

Proof. Suppose that A were not an anti-chain; then we could locate x # y € A such that z < y.
But then z-y* € F(G). Since R is a vertex-cover, either = € R or y* € R (or both), so actually
either x ¢ A or y ¢ A by definition; a contradiction.

To conclude the claim, we must show that |A| = |P| — 5(G). Now, |R| = B(G) and, thanks
to Claim 10, at most one of 2~ and z™ live in R. Thus, |R| = [{z € P: RN {z", 2"} # &}, so
|A| + |R| = | P|, which concludes the proof. O

With the help of the above claims, we have constructed an anti-chain in P of size |P| — 8(G),
and so w(P) > |P| — B(G).

Now, let M C E(G) be a maximum matching, so |[M| = o/(G). We use M to build a chain-cover
of P.
Define

U ={xeP:x iscovered by M}, U"={re€P:x"iscovered by M}, U=U UU".

Note that U~ and U™ could intersect.
We build a digraph D which has vertex set P and (z,y) € E(G) iff z7y" € M. Since M is a
matching, we find that:

o Ifz €U~ \UT, then degt z =1 and deg™ z = 0.
e If2c Ut \ U™, then deg” 2 =1 and degt 2 = 0.
o Ifx c U~ NUT, then deg®™ z = 1.

This implies that D is a disjoint union of directed paths, each of length at least one (why?).
Furthermore, if (xq,..., ) is one of these directed paths, then zg € U~ \ U™, x, € UT \ U™
and w1,...,75_1 € U~ NUT. In particular, D is the disjoint union of (U~ \ Ut| = |UT \ U™
many directed paths. Now, if (zo, ..., ) is one of these directed paths, then x; xzﬁrl € M for each
i€{0,...,k—1}. Thus, g < -+ <z and so {zg,...,2x} is a chain in P. Using these chains,
we have shown that we can cover U C P by at most [U~ \ U"| =|U™ \ U~| many chains. We can
then cover all of P\ U with |P\ U| many chains by simply taking each element to be its own chain.
Thus, we have constructed a chain-cover of P using at most

[UT\UT|+[P\U|=P+[U\U"|-|U|=|P| - |U"]

many chains. Certainly |[UT| = |M| = o/(G), so we have shown that c¢(P) < |P| — o/ (G).



Finally, K6nig tells us that o/ (G) = 5(G) and so
co(P) < |P| = a/(G) =|P| - B(G) < w(P). [

So, we just used Kénig to prove Dilworth. Now let’s do the reverse, thus showing that Kénig,
Hall and Dilworth are all morally the same theorem, despite their apparent differences.

Dilworth = Kénig. Let G be a bipartite graph with parts X,Y’; we need to prove that o/(G) =
B(G). Recall that o/ (G) < B(G) always, so we just need to prove that 8(G) < o/(G).

We create a poset (P, <) from G where P =V(G)andz <y iff x € X,y € Y and 2y € E(G).°
Note that h(P) < 2.

Let P=C1U---UCy be a minimum chain cover of P, so k = ¢(P). We can label these chains
so that |C1| > -+ > |Ck| Now, each chain has at least one element and at most two elements (since
h(P) < 2). Thus, let £ € {0,...,k} be such that |Cy| =--- = |C¢| =2 and |Cp41| = --- = |Ck| = 1.
In particular, |P| = 2¢ + (k — ¢) = k + ¢. Now, for each i € [{], C; = {z,y} where z € X,
y € Y and zy € E(G); i.e. C; corresponds to an edge of G. Since C1,...,Cy are disjoint, these ¢
corresponding edges are vertex disjoint and hence a matching. Thus, ¢/(G) > ¢. In other words,
|Pl=k+{¢<c(P)+d(G) = d(G)>|P|—c(P).

Now, let A C P be a maximum anti-chain, so |A| = w(P). Then consider B = P\ A = V(G)\ A.
We claim that B is a vertex-cover of G. Indeed, if there were some uncovered zy € E(G) (z €
X,y €Y), then we would have x,y € A. But z < y, so this is impossible since A is an antichain.
Thus, 8(G) < |B| = |P| - |4] = |P| - w(P).

Finally, Dilworth tells us that w(P) = ¢(P) and so

B(G) < |P| - w(P) = |P| - ¢(P) < (G). 0

°If you already know a bit about posets, we're creating P so that G is the Hasse diagram of P.



