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Here’s an alternative proof of Theorem 1.8 in the book using breaks instead of paths.

Theorem 1. Let G be a graph on at least three vertices. If there are distinct vertices u ̸= v ∈ V (G)
such that both G− u and G− v are connected, then G itself is connected.

Proof. Consider any partition V (G) = A⊔B with A and B nonempty. We need to show that there
is some edge of G with one vertex in A and the other in B.

We begin by observing that we can pick w ∈ {u, v} such that A ̸= {w} and B ̸= {w}. Note
that if both A and B have at least two elements, then we can pick w arbitrarily, so, by symmetry,
it suffices to consider the case when A is a singleton. First suppose that A = {u}; then picking
w = v, we have A ̸= {w} and also B ̸= {w} since |B| ≥ 2. Similarly, if A = {v}; then picking
w = u, we have A ̸= {w} and also B ̸= {w} since |B| ≥ 2.

Consider G− w, which is connected by assumption. Since A ̸= {w} and B ̸= {w}, we see that
A\{w} and B\{w} are both nonempty; furthermore, V (G−w) = (A\{w})⊔(B\{w}). Therefore,
there must be some a ∈ A \ {w} and some b ∈ B \ {w} such that ab ∈ E(G − w). Noting that
a ∈ A, b ∈ B and ab ∈ E(G) as well concludes the proof

Here is a slightly different proof of Theorem 1.12 in the book, though it’s very similar; I’ve
also included a few more careful details. Recall that a cycle of length n (n ≥ 3) in a graph G is a
sequence of distinct vertices (v0, . . . , vn−1) such that viv(i+1) mod n ∈ E(G) for all i ∈ {0, . . . , n−1}.

Theorem 2. G is a bipartite graph if and only if it contains no odd-length cycle.

Proof. We first observe that G is bipartite if and only if every subgraph of G is bipartite. Indeed,
the reverse direction is trivial since G is a subgraph of itself. On the other hand, if V (G) = A ⊔B
is a bipartition of G, and H is any subgraph of G, A ∩ V (H) and B ∩ V (H) form a bipartition of
H (why?).

(⇒) We prove the contrapositive. We showed in class that odd-length cycles are not bipartite;
therefore, the claim follows from the above observation.

(⇐) We again prove the contrapositive. Suppose that G is not bipartite. First, we may assume
that G is connected; indeed, if G is not connected then we can break it into connected components
G1, . . . , Gk. If each Gi is bipartite, then so is G (why?), so there must be some Gi which is not
bipartite: if we find an odd cycle in this Gi, then that odd cycle exists in G as well.

Fix any v ∈ V (G) and define Ni = {u ∈ V (G) : d(v, u) = i}. Note that N∞ = ∅ since G is
connected, that N0 = {v} and that the Ni’s are disjoint.

We begin with an observation: if xy ∈ E(G) with x ∈ Ni and y ∈ Nj , then |i− j| ≤ 1. To prove
this, consider a v-x geodesic (v = v0, . . . , vi = x) (recall that d(v, x) = i). Then since xy ∈ E(G),
we know that (v = v0, . . . , vi = x, y) is a v-y walk of length i + 1, and so j = d(v, y) ≤ i + 1. A
symmetric argument shows that i ≤ j + 1 and so the observation holds.
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that is, A is the set of all vertices at an even distance from v and B is the set of all vertices at an
odd distance from v. Note that V (G) = A⊔B since G is connected. Since G is not bipartite there
must be some edge xy ∈ E(G) completely contained in either A or in B; suppose that x ∈ Ni and
y ∈ Nj . From above, we know that |i − j| ≤ 1; if |i − j| = 1, then i and j have different parity
and so x ∈ A, y ∈ B or vice versa. Thus, we must have i = j, i.e. x, y ∈ Ni; note that i ≥ 1 since
x ̸= y. Fix v-x v-y geodesics (v = x0, . . . , xi = x) and (v = y0, . . . , yi = y), respectively. Define
j ∈ {0, . . . , i} to be the largest index such that xj ∈ {y0, . . . , yi}; observe the following:

• j exists since x0 = y0.

• xj = yj (and hence j < i since we know x ̸= y). Indeed, we know that xj = yk for some
k ∈ {0, . . . , i}. Observe that (v = x0, . . . , xj = yk, yk+1, . . . , yi = y) is a v-y walk of length
j+ i−k, so j+ i−k ≥ d(v, y) = i implying j ≥ k. Similarly, (v = y0, . . . , yk = xj , . . . , xi = x)
is a v-x walk of length k + i− j, so k + i− j ≥ d(v, x) = i implying k ≥ j.

We now consider (x = xi, xi−1, . . . , xj+1, xj = yj , yj+1, . . . , yi−1, yi = y). By the definition of j, all
of these vertices are distinct and so this is a cycle in G (since xy ∈ E(G) by assumption). Finally,
we observe that the length of this cycle is 2(i− j) + 1, which is odd.


