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Here are two different (but very similar) proofs that a connected graph has a spanning tree.
The ideas here can be very useful.

Theorem 1. If G is connected, then G contains a spanning tree.

Proof #1. Let G denote the set of all spanning subgraphs of G which are connected. Observe that
G is non-empty since certainly G ∈ G. Therefore, let T ∈ G be any element with the fewest number
of edges. We claim that T is a spanning tree of G.

Firstly, since T ∈ G, we know that T is a spanning subgraph of G and is connected; thus we
need only show that T is acyclic. Suppose for the sake of contradiction that T contains a cycle;
call it C. Fix any edge e ∈ E(C) and consider T ′ = T − e. Since we did not modify the vertex set
by removing the edge e, we know that T ′ is still a spanning subgraph of G. Additionally, T ′ is still
connected since e was chosen to be in a cycle of T . But this means that T ′ ∈ G; a contradiction
since T ′ has strictly fewer edges than does T .

Proof #2. Let G denote the set of all spanning subgraphs of G which are acyclic. Observe that G is
non-empty since (V (G),∅) ∈ G. Therefore, let T ∈ G be any element with the maximum number
of edges. We claim that T is a spanning tree of G.

Firstly, since T ∈ G, we know that T is a spanning subgraph of G and is acyclic; thus we need
only show that T is connected. Suppose for the sake of contradiction that T is disconnected; thus we
can partition V (T ) = A⊔B with both A and B non-empty such that there are no edges of T between
A and B. Since V (T ) = V (G) and G is connected, there must be some edge e ∈ E(G) \ E(T )
such that e has one end-point in A and the other in B; consider T ′ = T + e. Firstly, T ′ is still a
spanning subgraph of G since we did not modify the vertex set. Next, T ′ is still acyclic since the
edge e must have had its end points in different connected components of T . But this means that
T ′ ∈ G; a contradiction since T ′ has strictly more edges than does T .

Corollary 2. If G is a connected graph on n vertices, then |E(G)| ≥ n − 1 with equality if and
only if G is a tree.

Proof. Theorem 1 guarantees that G has a spanning tree, call it T . Since T is a tree on n vertices,
we know that |E(T )| = n − 1. Therefore, n − 1 ≤ |E(T )| ≤ |E(G)| with equality if and only if
G = T .

Let’s see another application of these ideas. The following theorem says that, in a connected
graph, any set of edges can be extended to a spanning subgraph without introducing any extra
cycles. The most common application of the theorem is that any acyclic set of edges can be extended
to a spanning tree.

Theorem 3. Let G be a connected graph and let S be any subset of edges of G. Then G has a
connected, spanning subgraph H such that E(H) ⊇ S and if C is a cycle in H, then E(C) ⊆ S.

Before we prove the theorem, notice that Theorem 1 follows as a corollary by taking S = ∅.

Proof. Let G denote the set of all H such that

• H is a spanning subgraph of G, and
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• H is connected, and

• E(H) ⊇ S.

We note that G is non-empty since G ∈ G. Thus, let H ∈ G be any element with the fewest number
of edges. We claim that H is our desired subgraph.

Firstly, since H ∈ G, we know that H is a spanning subgraph of G, is connected and E(H) ⊇ S.
So we need only show that H does not have any extraneous cycles. Suppose that C is a cycle in
H with E(C) ̸⊆ S. Therefore, there is some edge e ∈ E(C) \ S; consider H ′ = H − e. Since we did
not modify the vertex set by removing e, H ′ is a spanning subgraph of G. Additionally, E(H ′) ⊇ S
since e /∈ S. Finally, H ′ is still connected since e was chosen to be in a cycle of H. But this means
that H ′ ∈ G; a contradiction since H ′ has strictly fewer edges than does H.


