MATH 314 Extra Notes Feb 10

These notes are from https://mathematicaster.org/teaching/graphs2022/extra_02-10.pdf

Here are two different (but very similar) proofs that a connected graph has a spanning tree.
The ideas here can be very useful.

Theorem 1. If G is connected, then G contains a spanning tree.

Proof #1. Let G denote the set of all spanning subgraphs of G which are connected. Observe that
G is non-empty since certainly G € G. Therefore, let T' € G be any element with the fewest number
of edges. We claim that T is a spanning tree of G.

Firstly, since T' € G, we know that T is a spanning subgraph of G and is connected; thus we
need only show that 7' is acyclic. Suppose for the sake of contradiction that T contains a cycle;
call it C. Fix any edge e € E(C) and consider 7" = T — e. Since we did not modify the vertex set
by removing the edge e, we know that 7" is still a spanning subgraph of G. Additionally, 7" is still
connected since e was chosen to be in a cycle of T. But this means that 77 € G; a contradiction
since T” has strictly fewer edges than does T'. O

Proof #2. Let G denote the set of all spanning subgraphs of G which are acyclic. Observe that G is
non-empty since (V(G), @) € G. Therefore, let T' € G be any element with the maximum number
of edges. We claim that T is a spanning tree of G.

Firstly, since T' € G, we know that T is a spanning subgraph of G and is acyclic; thus we need
only show that 7" is connected. Suppose for the sake of contradiction that T is disconnected; thus we
can partition V(T') = AUB with both A and B non-empty such that there are no edges of T" between
A and B. Since V(T') = V(G) and G is connected, there must be some edge e € E(G) \ E(T)
such that e has one end-point in A and the other in B; consider 7" = T + e. Firstly, T” is still a
spanning subgraph of G since we did not modify the vertex set. Next, T" is still acyclic since the
edge e must have had its end points in different connected components of T'. But this means that
T’ € G; a contradiction since T” has strictly more edges than does T. O

Corollary 2. If G is a connected graph on n wvertices, then |E(G)| > n — 1 with equality if and
only if G is a tree.

Proof. Theorem 1 guarantees that G has a spanning tree, call it T'. Since T is a tree on n vertices,
we know that |E(T)| = n — 1. Therefore, n — 1 < |E(T)| < |E(G)| with equality if and only if
G=T. O

Let’s see another application of these ideas. The following theorem says that, in a connected
graph, any set of edges can be extended to a spanning subgraph without introducing any extra
cycles. The most common application of the theorem is that any acyclic set of edges can be extended
to a spanning tree.

Theorem 3. Let G be a connected graph and let S be any subset of edges of G. Then G has a
connected, spanning subgraph H such that E(H) 2 S and if C is a cycle in H, then E(C) C S.

Before we prove the theorem, notice that Theorem 1 follows as a corollary by taking S = @.
Proof. Let G denote the set of all H such that

e H is a spanning subgraph of G, and
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e H is connected, and
e E(H)DS.

We note that G is non-empty since G € G. Thus, let H € G be any element with the fewest number
of edges. We claim that H is our desired subgraph.

Firstly, since H € G, we know that H is a spanning subgraph of G, is connected and E(H) 2 S.
So we need only show that H does not have any extraneous cycles. Suppose that C' is a cycle in
H with E(C) € S. Therefore, there is some edge e € E(C)\ S; consider H' = H — e. Since we did
not modify the vertex set by removing e, H' is a spanning subgraph of G. Additionally, E(H') 2 S
since e ¢ S. Finally, H' is still connected since e was chosen to be in a cycle of H. But this means
that H' € G; a contradiction since H' has strictly fewer edges than does H. O



