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These notes are from https://mathematicaster.org/teaching/graphs2022/extra_03-03.pdf

Here is a proof of Menger’s theorem which is slightly different from that in the book. The main
workhorse of the proof is Lemma 1 and it will be our friend later in the course as well :)

Let G be a graph and fix any A,B ⊆ V (G) with A,B non-empty (note that A and B may
intersect). An A-B path is a path (v0, . . . , vk) in G such that v0 ∈ A, vk ∈ B and none of the
internal vertices v1, . . . , vk−1 live in either A or B. Note that if a ∈ A∩B, then (a) is an A-B path.

An A-B separator is a set S ⊆ V (G) such that G− S contains no (A \ S)-(B \ S) path.1 Note
that S = A and S = B are trivially A-B separators; in particular, A-B separators exist. Let
κG(A,B) denote the size of a minimum A-B separator in G.

Observe that S is an A-B separator if and only if every A-B path in G contains a vertex from
S. In particular, if P1, . . . , Pk are vertex-disjoint A-B paths, then k ≤ κG(A,B). Let pG(A,B)
denote the maximum number of vertex-disjoint A-B paths in G.

Lemma 1. Let G be a graph and fix any A,B ⊆ V (G) with A,B non-empty. Then pG(A,B) =
κG(A,B).

Often, a collection of vertex-disjoint A-B paths in G is called an A-B connector. With this
language, the lemma states that any maximum A-B connector has the same size as any minimum
A-B separator.

Proof. We have already noted that pG(A,B) ≤ κG(A,B), so we must prove that pG(A,B) ≥
κG(A,B). We prove this by induction on |E(G)|.

For the base case, consider when |E(G)| = 0. Then every A-B path has the form (x) for some
x ∈ A ∩B (should such an x exist). Thus, pG(A,B) = |A ∩B| = κG(A,B).

Suppose now that |E(G)| ≥ 1 and fix any e ∈ E(G). Set k = κG(A,B); we must find k
vertex-disjoint A-B paths in G in order to show that pG(A,B) ≥ k. Consider the graph G− e. It
must be the case that κG−e(A,B) ∈ {k, k − 1} (why? It’s the same reasoning as in HW7.3.2). If
κG−e(A,B) = k, then pG−e(A,B) = k by the induction hypothesis and so there are k vertex-disjoint
A-B paths in G− e. Each of these paths is also a path in G and so pG(A,B) ≥ k as needed.

Thus, suppose that κG−e(A,B) = k − 1. Let S be a minimum A-B separator in G − e, so
|S| = k − 1. By assumption, κG(A,B) = k > |S| and so there is an A-B path in G − S. Since
these paths don’t exist in (G− e)−S, it must be the case that each of them use the edge e. Let P
be any such path and label e = v1v2 such that P uses the vertex v1 before the vertex v2. Observe
that every A-{v2} path in G− S and every {v1}-B path in G− S uses the edge e or else we could
avoid e all-together.

Now, we know that v1, v2 /∈ S. For i ∈ {1, 2}, set Si = S ∪ {vi}; then |Si| = k. Additionally,
both S1 and S2 are A-B separators in G since every A-B path in G− S used the edge e = v1v2.

Let T1 be a minimum A-S1 separator in G−e and let T2 be a minimum S2-B separator in G−e.
We claim that T1, T2 are both A-B separators in G. Indeed, suppose for the sake of contradiction
that there were an A-B path in G− T1; call it P . Since S1 is an A-B separator, the path P must
contain a vertex from S1, let P

′ be the sub-path of P which ends at the first vertex encountered in
S1. Then P ′ is an A-S1 path in G− T1, so since T1 is an A-S1 separator in G− e, this means that
P ′ uses the edge e. Since v1 ∈ S1, the only way that this is possible is if P ′ ends in (v2, v1). But
then P ′ sans the last vertex v1 is an A-{v2} path in G−S1 = G− (S ∪{v1}) contradicting the fact

1The book also defines a notion of a separator which is a little bit different than this, so be careful.
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that any A-{v2} path in G−S must use the edge e. A symmetric argument works to show that T2

is also an A-B separator.
Since T1, T2 areA-B separators inG, we must have |Ti| ≥ κG(A,B) = k. Therefore, κG−e(A,S1) =

|T1| ≥ k and κG−e(S2, B) = |T2| ≥ k. By the induction hypothesis, we therefore know that

pG−e(A,S1) = κG−e(A,S1) ≥ k and pG−e(S2, B) = κG−e(S2, B) ≥ k.

Thus, there are at least k vertex-disjoint A-S1 paths in G − e and at least k vertex-disjoint S2-B
paths in G − e. Since |S1| = |S2| = k, there must actually be exactly k of each. Furthermore,
by labeling S = {s1, . . . , sk−1}, this same fact means that we can find vertex-disjoint A-S1 paths
P1, . . . , Pk such that the last vertex of Pk is v1 and, for each i ∈ [k − 1], the last vertex of Pi is si.
Similarly, we can find vertex-disjoint S2-B paths P ′

1, . . . , P
′
k such that the first vertex of P ′

k is v2
and, for each i ∈ [k − 1], the first vertex of P ′

i is si. For each i ∈ [k − 1] note that concatenating
Pi and P ′

i is an A-B path in G. Also, since v1v2 ∈ E(G), concatenating Pk and P ′
k is also an A-B

path in G. After all this work, we see that these k concatenated paths are vertex-disjoint and so
pG(A,B) ≥ k as needed.

After all that work, we can finally prove Menger’s Theorem. Recall that paths are said to be
internally-disjoint if they share no vertices beyond their end-points.

Theorem 2 (Menger’s Theorem for vertex-connectivity). Let G be a graph on at least two vertices.
G is k-connected (i.e. κ(G) ≥ k) if and only if there are at least k internally-disjoint u-v paths for
every u ̸= v ∈ V (G).

Proof. (⇐) We prove the contrapositive: suppose that G is not k-connected, so κ(G) ≤ k − 1.
We need to show that there are some u ̸= v ∈ V (G) for which there are at most k − 1 many
internally-disjoint u-v paths in G.

If G is a clique, then G ∼= Kn for some n ≤ k since κ(Kn) = n− 1. Consider any u ̸= v ∈ V (G).
Since |V (G) \ {u, v}| = n− 2 there are at most n− 2 internally-disjoint u-v paths which use some
vertex other than u and v. Along with the path (u, v), this yields at most n − 1 ≤ k − 1 many
internally-disjoint u-v paths.

Now suppose that G is not a clique; thus there is some U ⊆ V (G) with |U | = κ(G) ≤ k − 1
such that G − U is disconnected. Consider any u, v in different connected components of G − U .
Then every u-v path in G must use some vertex in U and hence there are at most |U | ≤ k−1 many
internally-disjoint u-v paths in G.

(⇒) We proceed by induction on |E(G)|. The claim is immediate if |E(G)| = 0 since then
κ(G) = 0; thus, suppose that |E(G)| ≥ 1. Fix any u ̸= v ∈ V (G); we must find at least κ(G) many
internally-disjoint u-v paths in G.

Case 1: uv ∈ E(G). By HW7.3.2, we know that κ(G − uv) ≥ κ(G) − 1. Thus, the induction
hypothesis allows us to conclude that there are at least κ(G − uv) ≥ κ(G) − 1 many internally-
disjoint u-v paths in G− uv. These paths along with the path (u, v) is then a collection of at least
κ(G) many internally-disjoint u-v paths in G.

Case 2: uv /∈ E(G). Let S ⊆ V (G−{u, v}) = V (G)\{u, v} be a minimum N(u)-N(v) separator
in G − {u, v}, so |S| = κG−{u,v}(N(u), N(v)). We claim that u and v are in different connected
components of G− S. Indeed, since uv /∈ E(G) every u-v path in G contains an N(u)-N(v) path.
All of these are destroyed upon deleting S and so there is no u-v path in G − S. In particular,
G− S is disconnected and so |S| ≥ κ(G). Thus, appealing to Lemma 1, we have

pG−{u,v}(N(u), N(v)) = κG−{u,v}(N(u), N(v)) ≥ κ(G).



In particular, there are at least κ(G) many vertex-disjoint N(u)-N(v) paths in G − {u, v}. Ap-
pending u to the start and v to the end of each of these paths then yields at least κ(G) many
internally-disjoint u-v paths in G.

There is also an edge-connectivity version of Menger’s Theorem.

Theorem 3 (Menger’s Theorem for edge-connectivity). Let G be a graph on at least two vertices.
G is k-edge-connected (i.e. λ(G) ≥ k) if and only if there are at least k edge-disjoint u-v paths for
every u ̸= v ∈ V (G).

We will need an intermediate lemma about line graphs.

Lemma 4. Let G be a graph and fix any u ̸= v ∈ V (G). If (e0, . . . , ek) is a path in the line graph
L(G) with u ∈ e0 and v ∈ ek, then there is a u-v path in G using only edges from {e0, . . . , ek}.

Proof. Consider the spanning subgraph H of G which has only the edges e0, . . . , ek. We claim that
H contains a u-v path which will verify the claim.

Consider any partition V (H) = V (G) = A ⊔ B with u ∈ A and v ∈ B; we must show that H
has an edge between A and B. Now, let i ∈ {0, . . . , k} be the smallest index such that ei ∩B ̸= ∅.
We know that i exists since v ∈ ek ∩B. We claim that ei ∩A ̸= ∅ as well which will conclude the
proof. If i = 0, then u ∈ ei ∩ A =⇒ ei ∩ A ̸= ∅, so suppose that i ≥ 1. Then, since ei−1 and ei
are adjacent in L(G), we must have ei−1 ∩ ei ̸= ∅. By the definition of i, we know that ei−1 ⊆ A
and so the common vertex of ei−1 and ei lives in A; thus ei ∩A ̸= ∅.

Proof of Theorem 3. Note that G ̸∼= K1 since it has at least two vertices; thus we don’t need to
worry about any edge-cases here.

(⇐) We prove the contrapositive: suppose that G is not k-edge-connected, so λ(G) ≤ k − 1.
Then we can find an edge-cut S ⊆ E(G) with |S| = λ(G) ≤ k−1. Consider vertices u, v in different
connected components of G − S, then every u-v path in G uses an edge from S and hence there
are at most |S| ≤ k − 1 many edge-disjoint u-v paths in G.

(⇒) If λ(G) = 0, then the claim holds trivially, so we may suppose that λ(G) ≥ 1. For v ∈ V (G),
define Ev = {e ∈ E(G) : e ∋ v} to be the set of edges incident to v. Since |Ev| = deg v ≥ δ(G) ≥
λ(G) ≥ 1, we know that each Ev is non-empty.

Fix any u ̸= v ∈ V (G); we must find at least λ(G) many edge-disjoint u-v paths in G. Consider
the line graph L(G) of G and consider the sets Eu and Ev (which are subsets of the vertices of
L(G)). We claim that κL(G)(Eu, Ev) ≥ λ(G). Take any S ⊆ E(G) = V (L(G)) which is an Eu-Ev

separator in L(G). If L(G)−S is connected, then either S ⊇ Eu or S ⊇ Ev which would mean that
|S| ≥ δ(G) ≥ λ(G) as needed. Otherwise, L(G) − S is disconnected. Now, L(G − S) = L(G) − S
and so DS1.7.4 implies that G− S must be disconnected as well. Hence S is an edge-cut of G and
so |S| ≥ λ(G) as needed.

We therefore know that κL(G)(Eu, Ev) ≥ λ(G) and so pL(G)(Eu, Ev) ≥ λ(G) as well thanks
to Lemma 1. Thus, there are at least λ(G) vertex-disjoint Eu-Ev paths in L(G). These paths
correspond to disjoint sets of edges in G. While these sets of edges don’t necessarily form u-v
paths, each one contains a u-v path thanks to Lemma 4. Thus, we have found at least λ(G)
edge-disjoint u-v paths in G.


