MATH 314 Extra Notes Mar 3
These notes are from https://mathematicaster.org/teaching/graphs2022/extra_03-03.pdf

Here is a proof of Menger’s theorem which is slightly different from that in the book. The main
workhorse of the proof is Lemma 1 and it will be our friend later in the course as well :)

Let G be a graph and fix any A, B C V(G) with A, B non-empty (note that A and B may
intersect). An A-B path is a path (vg,...,vx) in G such that vg € A, vy € B and none of the
internal vertices vy, ..., vg_1 live in either A or B. Note that if a € AN B, then (a) is an A-B path.

An A-B separator is a set S C V(G) such that G — S contains no (A4 \ S)-(B\ S) path.! Note
that S = A and S = B are trivially A-B separators; in particular, A-B separators exist. Let
kG(A, B) denote the size of a minimum A-B separator in G.

Observe that S is an A-B separator if and only if every A-B path in G contains a vertex from
S. In particular, if Py,..., Py are vertex-disjoint A-B paths, then k£ < kg(A, B). Let pg(A, B)
denote the maximum number of vertex-disjoint A-B paths in G.

Lemma 1. Let G be a graph and fix any A, B C V(G) with A, B non-empty. Then pg(A, B) =
ka(A, B).

Often, a collection of vertex-disjoint A-B paths in G is called an A-B connector. With this
language, the lemma states that any maximum A-B connector has the same size as any minimum
A-B separator.

Proof. We have already noted that pg(A, B) < kg(A,B), so we must prove that pg(A, B) >
ka(A, B). We prove this by induction on |E(G)].

For the base case, consider when |E(G)| = 0. Then every A-B path has the form (x) for some
x € AN B (should such an z exist). Thus, pg(A, B) = |AN B| = kg(A, B).

Suppose now that |E(G)| > 1 and fix any e € E(G). Set k = kg(A, B); we must find &k
vertex-disjoint A-B paths in G in order to show that pg(A, B) > k. Consider the graph G —e. It
must be the case that kg_.(A, B) € {k,k — 1} (why? It’s the same reasoning as in HW7.3.2). If
kG—e(A, B) =k, then pg_.(A, B) = k by the induction hypothesis and so there are k vertex-disjoint
A-B paths in G — e. Each of these paths is also a path in G and so pg(A, B) > k as needed.

Thus, suppose that kg_e(A,B) = k — 1. Let S be a minimum A-B separator in G — e, so
|S| = k — 1. By assumption, kg(A, B) = k > |S| and so there is an A-B path in G — S. Since
these paths don’t exist in (G —e) — S, it must be the case that each of them use the edge e. Let P
be any such path and label e = v1v5 such that P uses the vertex v; before the vertex vy. Observe
that every A-{vs} path in G — S and every {v;}-B path in G — S uses the edge e or else we could
avoid e all-together.

Now, we know that vi,vs ¢ S. For i € {1,2}, set S; = S U{v;}; then |S;| = k. Additionally,
both S7 and Sy are A-B separators in G since every A-B path in G — S used the edge e = vivs.

Let T7 be a minimum A-S7 separator in GG —e and let T5 be a minimum S»-B separator in G —e.
We claim that 17,15 are both A-B separators in (G. Indeed, suppose for the sake of contradiction
that there were an A-B path in G — T7; call it P. Since S; is an A-B separator, the path P must
contain a vertex from Si, let P’ be the sub-path of P which ends at the first vertex encountered in
S1. Then P’ is an A-S7 path in G — T4, so since T} is an A-S; separator in G — e, this means that
P’ uses the edge e. Since v; € Sy, the only way that this is possible is if P’ ends in (vg,v1). But
then P’ sans the last vertex vy is an A-{vy} path in G—S; = G — (SU{v1}) contradicting the fact
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that any A-{ve} path in G — S must use the edge e. A symmetric argument works to show that 75
is also an A-B separator.

Since T, T» are A-B separators in G, we must have |T;| > kg (A, B) = k. Therefore, kg_.(A4,51) =
|T1| > k and kg—_e(S2, B) = T3] > k. By the induction hypothesis, we therefore know that

pG—e(Av Sl) = HG—E(A7 Sl) > k and pG—e(527B) = HG—B(SQaB) > k.

Thus, there are at least k vertex-disjoint A-S7 paths in G — e and at least k vertex-disjoint Ss-B
paths in G — e. Since |S1| = |S2| = k, there must actually be exactly k of each. Furthermore,
by labeling S = {s1,...,sk_1}, this same fact means that we can find vertex-disjoint A-S; paths
Py, ..., Py such that the last vertex of Py is vy and, for each i € [k — 1], the last vertex of P, is s;.
Similarly, we can find vertex-disjoint So-B paths Py, ..., P} such that the first vertex of P} is vy
and, for each i € [k — 1], the first vertex of P/ is s;. For each i € [k — 1] note that concatenating
P; and P/ is an A-B path in G. Also, since vivg € E(G), concatenating P, and P, is also an A-B
path in G. After all this work, we see that these k& concatenated paths are vertex-disjoint and so
pc(A, B) > k as needed. O

After all that work, we can finally prove Menger’s Theorem. Recall that paths are said to be
internally-disjoint if they share no vertices beyond their end-points.

Theorem 2 (Menger’s Theorem for vertex-connectivity). Let G be a graph on at least two vertices.
G is k-connected (i.e. k(G) > k) if and only if there are at least k internally-disjoint u-v paths for
every u # v € V(G).

Proof. (<) We prove the contrapositive: suppose that G is not k-connected, so k(G) < k — 1.
We need to show that there are some u # v € V(G) for which there are at most k¥ — 1 many
internally-disjoint u-v paths in G.

If G is a clique, then G = K, for some n < k since k(K,,) = n— 1. Consider any u # v € V(G).
Since |V(G) \ {u, v}| = n — 2 there are at most n — 2 internally-disjoint u-v paths which use some
vertex other than u and v. Along with the path (u,v), this yields at most n — 1 < k — 1 many
internally-disjoint u-v paths.

Now suppose that G is not a clique; thus there is some U C V(G) with |U| = k(G) < k —1
such that G — U is disconnected. Consider any wu, v in different connected components of G — U.
Then every u-v path in G must use some vertex in U and hence there are at most |U| < k— 1 many
internally-disjoint u-v paths in G.

(=) We proceed by induction on |E(G)|. The claim is immediate if |E(G)| = 0 since then
k(G) = 0; thus, suppose that |[E(G)| > 1. Fix any u # v € V(G); we must find at least x(G) many
internally-disjoint u-v paths in G.

Case 1: uwv € E(G). By HW7.3.2, we know that k(G — uv) > k(G) — 1. Thus, the induction
hypothesis allows us to conclude that there are at least k(G — uwv) > k(G) — 1 many internally-
disjoint u-v paths in G — uv. These paths along with the path (u,v) is then a collection of at least
k(G) many internally-disjoint u-v paths in G.

Case 2: uv ¢ E(G). Let S CV(G—A{u,v}) = V(G)\{u, v} be a minimum N (u)-N (v) separator
in G — {u,v}, so || = kg_fuwy (N (u), N(v)). We claim that u and v are in different connected
components of G — S. Indeed, since uv ¢ E(G) every u-v path in G contains an N (u)-N(v) path.
All of these are destroyed upon deleting S and so there is no u-v path in G — S. In particular,
G — S is disconnected and so |S| > k(G). Thus, appealing to Lemma 1, we have

pG*{u,v}(N(u% N(U)) = KGf{u,v}(N(u)ﬂ N(U)) = K(G)



In particular, there are at least x(G) many vertex-disjoint N(u)-N(v) paths in G — {u,v}. Ap-
pending u to the start and v to the end of each of these paths then yields at least x(G) many
internally-disjoint u-v paths in G. O

There is also an edge-connectivity version of Menger’s Theorem.

Theorem 3 (Menger’s Theorem for edge-connectivity). Let G be a graph on at least two vertices.
G is k-edge-connected (i.e. N(G) > k) if and only if there are at least k edge-disjoint u-v paths for
every u # v € V(G).

We will need an intermediate lemma about line graphs.

Lemma 4. Let G be a graph and fix any uw # v € V(QG). If (eq,...,ex) is a path in the line graph
L(G) with u € ey and v € ey, then there is a u-v path in G using only edges from {eq, ..., e}

Proof. Consider the spanning subgraph H of G which has only the edges ey, ..., er. We claim that
H contains a u-v path which will verify the claim.

Consider any partition V(H) = V(G) = AU B with u € A and v € B; we must show that H
has an edge between A and B. Now, let ¢ € {0,...,k} be the smallest index such that e; N B # &.
We know that i exists since v € e, N B. We claim that e; N A # @ as well which will conclude the
proof. If i =0, thenu € N A = e; N A # &, so suppose that ¢ > 1. Then, since e;_1 and ¢;
are adjacent in L(G), we must have e¢;_1 Ne; # &. By the definition of i, we know that ¢;_; C A
and so the common vertex of e;_; and e; lives in A; thus e; N A # @. O

Proof of Theorem 3. Note that G 2 K since it has at least two vertices; thus we don’t need to
worry about any edge-cases here.

(«<=) We prove the contrapositive: suppose that G is not k-edge-connected, so A(G) < k — 1.
Then we can find an edge-cut S C E(G) with |S| = A(G) < k—1. Consider vertices u, v in different
connected components of G — S, then every u-v path in G uses an edge from S and hence there
are at most |S| < k — 1 many edge-disjoint u-v paths in G.

(=) If \(G) = 0, then the claim holds trivially, so we may suppose that A(G) > 1. Forv € V(G),
define E, = {e € E(G) : e 3 v} to be the set of edges incident to v. Since |E,| = degv > 0(G) >
AG) > 1, we know that each FE, is non-empty.

Fix any u # v € V(G); we must find at least A(G) many edge-disjoint u-v paths in G. Consider
the line graph L(G) of G and consider the sets F, and FE, (which are subsets of the vertices of
L(G)). We claim that rr(q)(Eu, Ey) > MG). Take any S C E(G) = V(L(G)) which is an E,-E,
separator in L(G). If L(G)— S is connected, then either S O FE, or S O E, which would mean that
|S| > §(G) > A(G) as needed. Otherwise, L(G) — S is disconnected. Now, L(G — S) = L(G) — S
and so DS1.7.4 implies that G — S must be disconnected as well. Hence S is an edge-cut of G and
so |S| > M(G) as needed.

We therefore know that kp(q)(Eu, Ey) > AMG) and so prq)(Eu, Ey) > AMG) as well thanks
to Lemma 1. Thus, there are at least A\(G) vertex-disjoint E,-E, paths in L(G). These paths
correspond to disjoint sets of edges in G. While these sets of edges don’t necessarily form u-v
paths, each one contains a u-v path thanks to Lemma 4. Thus, we have found at least A\(G)
edge-disjoint u-v paths in G. O



