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We begin by proving what is arguably the most important theorem about matchings: Hall’s
marriage theorem. This theorem specifically concerns matchings in bipartite graphs. First, note
that if G is a bipartite graph with parts A,B, then α′(G) ≤ min{|A|, |B|}. Additionally, G has a
matching which saturates, say, A if and only if α′(G) = |A|.

For a set S ⊆ V (G), we use N(S) to denote the union of the neighborhoods of all elements of
S — that is N(S) =

⋃
s∈S N(s). Note that t ∈ N(S) if and only if there is some s ∈ S such that

st ∈ E(G).

Theorem 1 (Hall’s Marriage Theorem). Let G be a bipartite graph with parts A and B. Then G
has a matching which saturates A (i.e. α′(G) = |A|) if and only if |N(S)| ≥ |S| for all S ⊆ A.

Note that the condition |N(S)| ≥ |S| is trivial if S = ∅, so one needs only consider non-empty
subsets of A in practice.

Hall’s marriage theorem is another “the obvious necessary condition is sufficient”. Indeed,
intuitively, in order to be able to match every element of A, each subset of A needs to have enough
“potential matches” available.

Proof. (⇒) Suppose thatM ⊆ E(G) is a matching which saturates A; we build a function f : A → B
where f(a) = b if ab ∈ M . The function f is well-defined since M saturates A and G is bipartite
(so M matches every vertex in A to some vertex in B). Also f is an injection since M is a matching
and so no two vertices of A are matched to the same vertex in B. Furthermore, f(a) ∈ N(a) for
every a ∈ A. Thus, for any subset S ⊆ A, we have f(S) ⊆ N(S) and so |S| = |f(S)| ≤ |N(S)|.

(⇐) This is the interesting direction. Since G is bipartite with parts A,B, note that G has a
matching which saturates A if and only if α′(G) = |A|.

We prove the contrapositive, so we show that if α′(G) < |A|, then there is some S ⊆ A for
which |S| > |N(S)|. By Kőnig’s theorem, we know that α′(G) = β(G) and so also β(G) < |A|. As
such, we can find a vertex-cover C ⊆ V (G) with |C| = β(G) < |A|. Observe that

|A| > |C| = |C ∩A|+ |C ∩B| =⇒ |C ∩B| < |A| − |C ∩A| = |A \ C|. (1)

Now, set S = A \C, so S ⊆ A. Consider any b ∈ N(S), so there is some s ∈ S with sb ∈ E(G).
Since C is a vertex-cover of G, C contains one of s or b. However, s /∈ C since s ∈ S = A \ C, so
b ∈ C. Since this holds for all b ∈ N(S), we have found that N(S) ⊆ C. Of course, N(S) ⊆ B and
so N(S) ⊆ C ∩B. Applying (1) then yields,

|N(S)| ≤ |C ∩B| < |A \ C| = |S|,

and so S is the subset we’re looking for.

We begin with a nice application.

Theorem 2. If G is a k-regular, bipartite graph for some k ≥ 1, then G has a perfect matching.

Proof. Call the two parts A,B. We show first that |A| = |B|. Indeed, we apply the bipartite
handshaking lemma to find that

k|A| =
∑
a∈A

deg a =
∑
b∈B

deg b = k|B| =⇒ |A| = |B|,
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since k ̸= 0. Thus, we just need to show that G has a matching which saturates A; this will imply
that α′(G) = |A| = |B| and so this matching is actually a perfect matching.

Fix any non-empty S ⊆ A; we must show that |N(S)| ≥ |S|. Consider the subgraph G′ of G
induced on S ∪N(S). Certainly degG′ a = degG a = k for all a ∈ S, and degG′ b ≤ degG b = k for
all b ∈ N(S). We apply the bipartite handshaking lemma to G′ and the fact that k > 0 to find that

k|S| =
∑
a∈S

degG′ a =
∑

b∈N(S)

degG′ b ≤ k|N(S)| =⇒ |S| ≤ |N(S)|.

In fact, we can extend the above theorem.

Theorem 3. Let G be a graph with parts A,B and suppose that no vertex of A is isolated. If
deg a ≥ deg b whenever a ∈ A, b ∈ B and ab ∈ E(G), then G has a matching which saturates A.

Before diving into the proof, we mention two useful facts:

• Silly sizes: If X is a non-empty finite set, then |X| =
∑

x∈X 1 and 1 =
∑

x∈X
1

|X| .

• Switching the order of summation: Suppose that X,Y are finite sets and Ω ⊆ X × Y . For
any function f : X × Y → R,∑

(x,y)∈Ω

f(x, y) =
∑
x∈X

∑
y∈Y :

(x,y)∈Ω

f(x, y) =
∑
y∈Y

∑
x∈X:

(x,y)∈Ω

f(x, y).1

Our use of the second fact will be as follows: for any S ⊆ A,∑
a∈S

∑
b∈N(a)

f(a, b) =
∑

b∈N(S)

∑
a∈N(b)

f(a, b).

This is seen by taking X = S, Y = N(S) and Ω = {(a, b) ∈ S ×N(S) : ab ∈ E(G)}.

Proof. First note that |N(a)| = deg a ≥ 1 for all a ∈ A since no vertex of A is isolated.
We verify Hall’s condition, so fix any S ⊆ A; we must show that |N(S)| ≥ |S|.

|S| =
∑
a∈S

1 =
∑
a∈S

∑
b∈N(a)

1

deg a
=

∑
b∈N(S)

∑
a∈N(b)

1

deg a

≤
∑

b∈N(S)

∑
a∈N(b)

1

deg b
=

∑
b∈N(S)

1 = |N(S)|,

where the inequality follows from the assumption since b ∈ N(S) ⊆ B, a ∈ N(b) ⊆ A and
ab ∈ E(G).

Here’s a nice corollary that’s useful to keep in mind:

Corollary 4. Let G be a bipartite graph with parts A,B and fix an integer k ≥ 1. If deg a ≥ k for
all a ∈ A and deg b ≤ k for all b ∈ B, then G has a matching which saturates A.

1One possible proof of this fact is accomplished considering
∑

x∈X,y∈Y g(x, y) where g(x, y) = f(x, y) if (x, y) ∈ Ω
and g(x, y) = 0 otherwise. This fact can be extended to the case when X and Y are (countably) infinite, but one
needs some extra assumptions on the function f in order to do so.



Hall’s theorem is often applied to objects other than graphs. One common situation is when
one wishes to select objects from a collection of sets without repetition.

Definition 5. For finite sets S1, . . . , Sn, a system of distinct representatives (SDR) is a collection
of distinct elements s1, . . . , sn such that si ∈ Si for all i ∈ [n]. The elements s1, . . . , sn are referred
to as representatives.

If we didn’t require that the representatives were distinct, then we would only need to require
that each set was non-empty. However, the distinctness throws in some complications.

Theorem 6 (Hall’s theorem for SDRs). For an integer n ≥ 1, let S1, . . . , Sn be finite (possibly
empty) sets. There exists a system of distinct representatives for these sets if and only if

|I| ≤
∣∣∣∣⋃
i∈I

Si

∣∣∣∣,
for every I ⊆ [n].

Proof. We build a bipartite graph G with parts A = [n] and B =
⋃n

i=1 Si where ab ∈ E(G)
(a ∈ A, b ∈ B) if and only if b ∈ Sa. Then there exists a system of distinct representatives if and
only if G has a matching which saturates A. Now, for any I ⊆ A = [n], we observe that

N(I) =
⋃
i∈I

Si,

and so the condition in the theorem is equivalent to Hall’s theorem applied to the graph G.

One useful observation is the following rephrasing of Corollary 4 to SDRs.

Corollary 7. Let S1, . . . , Sn be finite sets and fix an integer k ≥ 1. If |Si| ≥ k for all i ∈ [n] and
each element of

⋃n
i=1 Si is contained in at most k of the Si’s, then there exists a system of distinct

representatives.

One fun application of this corollary is that one can always extend a Latin rectangle to a Latin
square. I’ll make this a worksheet question in our next discussion session :)

Hall’s marriage theorem is excellent since it tells us exactly when there is a matching which
saturates one side of G. But what if we just want to know the size of the largest matching?

Theorem 8 (Hall’s Marriage Theorem, extended). Let G be a bipartite graph with parts A,B. For
a subset S ⊆ A, define defect(S) = max

{
0, |S| − |N(S)|

}
. Then

α′(G) = |A| −max
S⊆A

defect(S).

Notice that Hall’s condition is that defect(S) = 0 for all S ⊆ A.

Proof. We prove first that α′(G) ≥ |A|−maxS⊆A defect(S). To this end, set d = maxS⊆A defect(S).
We build a new graph G′ by adding d new vertices to B and connecting each of them to all of A;
call these new vertices B′. Then, for any S ⊆ A, we have NG′(S) = NG(S) ⊔B′ and so

|NG′(S)| = |NG(S)|+ d ≥ |NG(S)|+max{0, |S| − |NG(S)|} ≥ |S|.



Thus, we may apply Hall’s marriage theorem to G′ to find a matching which saturates A. By then
deleting the vertices in B′, we are left with a matching of G which has at least |A| − d many edges.

We now prove that α′(G) ≤ |A| −maxS⊆A defect(S). Let M ⊆ E(G) be a maximum matching
of G, let Ain ⊆ A be the set of vertices of A covered by M and let Aout ⊆ A be the set of vertices in
A not covered by M . Of course, A = Ain⊔Aout. Much like in our proof of Hall, we build a function
f : Ain → B where f(a) = b iff ab ∈ M . Just like earlier, f is an injection and f(a) ∈ N(a) for all
a ∈ Ain.

Now, consider any S ⊆ A; we have f(S ∩Ain) ⊆ N(S ∩Ain) and so |S ∩Ain| = |f(S ∩Ain)| ≤
|N(S ∩ Ain)| ≤ |N(S)|. Therefore, |S ∩ Aout| = |S| − |S ∩ Ain| ≥ |S| − |N(S)|. Since also
|S∩Aout| ≥ 0, we have shown that |S∩Aout| ≥ defect(S). In particular, |Aout| ≥ maxS⊆A|S∩Aout| ≥
maxS⊆A defect(S). We conclude that

α′(G) = |M | = |Ain| = |A| − |Aout| ≤ |A| −max
S⊆A

defect(S).

To end things off, we used Kőnig to prove Hall (and thus extended Hall); let’s show that Hall
(specifically the extended version) additionally implies Kőnig. In other words, Kőnig and Hall are
morally the same theorem.

Hall implies Kőnig. We proved last time that β(G) ≥ α′(G) always (G doesn’t even need to be
bipartite here), so we need only prove the reverse inequality; i.e. β(G) ≤ α′(G).

Fix any S ⊆ A and set C = (A \ S)⊔N(S); we claim that C is a vertex-cover of G. Indeed, fix
any edge ab ∈ E(G) with a ∈ A and b ∈ B. If a /∈ S, then a ∈ A \ S ⊆ C and so C covers ab. If
a ∈ S, then b ∈ N(a) ⊆ N(S) ⊆ C and so C covers ab. Therefore,

β(G) ≤ |C| = |A \ S|+ |N(S)| = |A| − |S|+ |N(S)|,

for every S ⊆ A. Additionally, A is clearly a vertex-cover of G and so β(G) ≤ |A|. Putting these
bounds together, we have

β(G) ≤ min
S⊆A

min
{
|A|, |A| − |S|+ |N(S)|

}
= min

S⊆A

(
|A| −max{0, |S| − |N(S)|}

)
= min

S⊆A

(
|A| − defect(S)

)
= |A| −max

S⊆A
defect(S).

Finally, the extended version of Hall’s theorem (Theorem 8) states that α′(G) = |A|−maxS⊆A defect(S)
and so β(G) ≤ α′(G) as needed.


