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We begin by proving what is arguably the most important theorem about matchings: Hall’s
marriage theorem. This theorem specifically concerns matchings in bipartite graphs. First, note
that if G is a bipartite graph with parts A, B, then o/(G) < min{|A|,|B|}. Additionally, G has a
matching which saturates, say, A if and only if o/(G) = |A|.

For a set S C V(G), we use N(S) to denote the union of the neighborhoods of all elements of

S — that is N(S) = J,.g N(s). Note that ¢t € N(S) if and only if there is some s € S such that
st € E(Q).

Theorem 1 (Hall’s Marriage Theorem). Let G be a bipartite graph with parts A and B. Then G
has a matching which saturates A (i.e. o/ (G) = |Al|) if and only if |N(S)| > |S| for all S C A.

ses

Note that the condition |[N(S)| > |S] is trivial if S = &, so one needs only consider non-empty
subsets of A in practice.

Hall’s marriage theorem is another “the obvious necessary condition is sufficient”. Indeed,
intuitively, in order to be able to match every element of A, each subset of A needs to have enough
“potential matches” available.

Proof. (=) Suppose that M C E(G) is a matching which saturates A; we build a function f: A — B
where f(a) = b if ab € M. The function f is well-defined since M saturates A and G is bipartite
(so M matches every vertex in A to some vertex in B). Also f is an injection since M is a matching

and so no two vertices of A are matched to the same vertex in B. Furthermore, f(a) € N(a) for
every a € A. Thus, for any subset S C A, we have f(S) C N(S) and so |S| = |f(S)| < |N(9)|.

(<) This is the interesting direction. Since G is bipartite with parts A, B, note that G has a
matching which saturates A if and only if o/(G) = |4|.

We prove the contrapositive, so we show that if o/(G) < |A|, then there is some S C A for
which |S| > |N(S)|. By Kénig’s theorem, we know that o/ (G) = 8(G) and so also B(G) < |A|. As
such, we can find a vertex-cover C C V(G) with |C| = B(G) < |A|. Observe that

Al > |C|=|CNA|+|CNnB| = |[CNnB|<|A|—-|CNnAl=|A\C]| (1)

Now, set S = A\ C,so S C A. Consider any b € N(59), so there is some s € S with sb € E(G).
Since C' is a vertex-cover of GG, C' contains one of s or b. However, s ¢ C since s € S = A\ C, so
b € C. Since this holds for all b € N(.5), we have found that N(S) C C. Of course, N(S) C B and
so N(S) C C'n B. Applying (1) then yields,

IN(S)| <[CnBl<[A\C|=5],
and so S is the subset we’re looking for. O
We begin with a nice application.

Theorem 2. If G is a k-regular, bipartite graph for some k > 1, then G has a perfect matching.

Proof. Call the two parts A, B. We show first that |A| = |B|. Indeed, we apply the bipartite
handshaking lemma to find that

klA| =) dega= degb=k|B| = |A| =B,
acA beB


https://mathematicaster.org/teaching/graphs2022/extra_03-31.pdf

since k # 0. Thus, we just need to show that G has a matching which saturates A; this will imply
that o/ (G) = |A| = | B| and so this matching is actually a perfect matching.

Fix any non-empty S C A; we must show that |[N(S)| > |S|. Consider the subgraph G’ of G
induced on S U N(S). Certainly degyra = degra = k for all a € S, and degq b < deg b = k for
all b € N(S). We apply the bipartite handshaking lemma to G’ and the fact that £ > 0 to find that

kS| =) deggra= > deggb<kIN(S)| = |S| < [N(5)I.
a€sS beN(S)

In fact, we can extend the above theorem.

Theorem 3. Let G be a graph with parts A, B and suppose that no vertex of A is isolated. If
dega > degb whenever a € A, b € B and ab € E(G), then G has a matching which saturates A.

Before diving into the proof, we mention two useful facts:
e Silly sizes: If X is a non-empty finite set, then |[X| =3, yland 1=y = T

e Switching the order of summation: Suppose that X, Y are finite sets and 2 C X x Y. For
any function f: X xY — R,

Z f(x,y)zz Z f(:v,y):z Z f(xay)'l

(z,y)EN reX yeY: yeY zeX:
(z.y)€Q (z.y)e

Our use of the second fact will be as follows: for any S C A,

>3 sen= 35 s

a€S beN(a) bEN(S) aeN (b
This is seen by taking X =S5, Y = N(S) and Q = {(a,b) € S x N(S) : ab € E(G)}.

Proof. First note that |[N(a)| = dega > 1 for all a € A since no vertex of A is isolated.
We verify Hall’s condition, so fix any S C A; we must show that |[N(S)| > |S].

S| = Zl—ZZ =D 23

acs a€SbeN (a bEN(S) aeN( b)
< 2 Z Z 1=IN(S)]
bEN(S) a€N (b bEN(S)

where the inequality follows from the assumption since b € N(S) € B, a € N(b) € A and
ab € E(G). O

Here’s a nice corollary that’s useful to keep in mind:

Corollary 4. Let G be a bipartite graph with parts A, B and fix an integer k > 1. If dega > k for
all a € A and degb < k for all b € B, then G has a matching which saturates A.

1One possible proof of this fact is accomplished considering D osex vey g(z,y) where g(x,y) = f(z,y) if (z,y) € Q
and g(z,y) = 0 otherwise. This fact can be extended to the case when X and Y are (countably) infinite, but one
needs some extra assumptions on the function f in order to do so.



Hall’s theorem is often applied to objects other than graphs. One common situation is when
one wishes to select objects from a collection of sets without repetition.

Definition 5. For finite sets Si,..., Sy, a system of distinct representatives (SDR) is a collection
of distinct elements s1, ..., s, such that s; € S; for alli € [n]. The elements s1,. .., s, are referred
to as representatives.

If we didn’t require that the representatives were distinct, then we would only need to require
that each set was non-empty. However, the distinctness throws in some complications.

Theorem 6 (Hall’s theorem for SDRs). For an integer n > 1, let Si,..., Sy, be finite (possibly
empty) sets. There exists a system of distinct representatives for these sets if and only if

Us.

iel

1] <

)

for every I C [n].

Proof. We build a bipartite graph G with parts A = [n] and B = |J;_; S; where ab € E(G)
(a € A,b € B) if and only if b € S,. Then there exists a system of distinct representatives if and
only if G has a matching which saturates A. Now, for any I C A = [n], we observe that

= U Sia
i€l
and so the condition in the theorem is equivalent to Hall’s theorem applied to the graph G. O
One useful observation is the following rephrasing of Corollary 4 to SDRs.

Corollary 7. Let Si,...,Sy be finite sets and fix an integer k > 1. If |S;| > k for all i € [n] and
each element of | JI_, S; is contained in at most k of the S;’s, then there exists a system of distinct
representatives.

One fun application of this corollary is that one can always extend a Latin rectangle to a Latin
square. I'll make this a worksheet question in our next discussion session :)

Hall’s marriage theorem is excellent since it tells us exactly when there is a matching which
saturates one side of G. But what if we just want to know the size of the largest matching?

Theorem 8 (Hall’s Marriage Theorem, extended) Let G be a bipartite graph with parts A, B. For
a subset S C A, define defect(S) = max{O |S| = [N(S)|}. Then

o (G)=|A| - maxdefect(S)

Notice that Hall’s condition is that defect(S) = 0 for all § C A.

Proof. We prove first that o/(G) > |A| —maxgc 4 defect(S). To this end, set d = maxgc 4 defect(S).
We build a new graph G’ by adding d new vertices to B and connecting each of them to all of A;
call these new vertices B’. Then, for any S C A, we have N/ (S) = Ng(S) U B" and so

[Nar (S)] = [Na(S)] + d = [Na(5)| + max{0, |S| — [Na(S)[} = [S].



Thus, we may apply Hall’s marriage theorem to G’ to find a matching which saturates A. By then
deleting the vertices in B’, we are left with a matching of G which has at least |A| — d many edges.

We now prove that o/(G) < |A| — maxgc 4 defect(S). Let M C E(G) be a maximum matching
of G, let A;;, C A be the set of vertices of A covered by M and let A,,: € A be the set of vertices in
A not covered by M. Of course, A = A;;, U Ayy:. Much like in our proof of Hall, we build a function
f: Ain — B where f(a) = b iff ab € M. Just like earlier, f is an injection and f(a) € N(a) for all
a € A,

Now, consider any S C A; we have f(SNA;,) CN(SNA;y) and so SN Ay, =f(SN Ay <
IN(S N Ain)| < |N(S)|. Therefore, |S N Aouel = S| — |S N Ain] > |S| — |N(S)|. Since also
|SNAout| > 0, we have shown that [SNAgu:| > defect(S). In particular, |Agy:| > maxgca|SNAout| >
maxgc 4 defect(S). We conclude that

o!(G) = M| = | Ain| = |A] ~ |Aou| < |A] — max defect(S). 0

To end things off, we used Kénig to prove Hall (and thus extended Hall); let’s show that Hall
(specifically the extended version) additionally implies Kénig. In other words, Kénig and Hall are
morally the same theorem.

Hall implies Kdnig. We proved last time that S(G) > o/(G) always (G doesn’t even need to be
bipartite here), so we need only prove the reverse inequality; i.e. 3(G) < o/(G).

Fix any S C A and set C' = (A\ S) UN(S); we claim that C' is a vertex-cover of G. Indeed, fix
any edge ab € F(G) witha € Aandbe B. If a ¢ S, then a € A\ S C C and so C covers ab. If
a €S, thenbe N(a) C N(S) C C and so C covers ab. Therefore,

B(G) <[Cl = AN S|+ [N(S)] = [A] = [S[ + [N(S)],

for every S C A. Additionally, A is clearly a vertex-cover of G and so 5(G) < |A|. Putting these
bounds together, we have

B(G) < minmin{|4], [4] — |5 + [N(S)[} = min(|A] - max{0, || — IN(S)I})

= gngnA}(|A| — defect(9)) = |A| - maxdefect(S)

Finally, the extended version of Hall’s theorem (Theorem 8) states that o/(G) = | A|—maxgc 4 defect(.S)
and so B(G) < o/(G) as needed. O



