MATH 314 Extra Notes Apr 5

These notes are from https://mathematicaster.org/teaching/graphs2022/extra_04-05.pdf

Let G be a graph. A (vertex-)coloring of G is simply a function f: V(G) — C where C is
some set. The set C is often referred to as a “palette” of colors. Intuitively, we are “coloring”
each vertex of G with some color in the “palette” C'. Mostly, this just gives us a colloquial way
to discuss arbitrary functions on V(G). We (kinda) pecified “vertex-coloring”, since later we will
discuss “edge-colorings” which are simply functions from E(G) to some set. In general, when
anyone in math mentions a “coloring” of an object, they are literally just discussing a function
from said object to an arbitrary set.

For a positive integer t, a t-coloring (or t-vertex-coloring if such a distinction is necessary later)
is a coloring where the “palette” has t colors. Since the actual nature of the “palette” doesn’t
usually matter, usually, a t-coloring is a function f: V(G) — [t]. Note that, technically, not every
color must be used in a t-coloring. In particular, a ¢-coloring is also a (¢ + 1)-coloring, technically.

So far, colorings are simply functions with domain V(G) and have nothing to do with the actual
graph G; let’s fix this. A proper coloring of G is a function f: V(G) — C, where C is some set,
such that zy € E(G) = f(z) # f(y). That is, no two end-points of an edge receive the same
color. It is very rare that we will discuss colorings which are not proper (since we care about the
graph, afterall).

Reasonably, a proper t-coloring of G is a proper coloring of G which uses at most ¢ colors.
Intuitively, if G has a lot of edges, then GG requires quite a few colors in order to have a proper
coloring. We will see that this is not exactly true, but it’s a reasonable intuition.

Definition 1. Let G be a graph. The chromatic number of G, denoted by x(G), is the smallest
integer t such that G has a proper t-coloring.

A quick observation:
Observation 2. x(G) =1 if and only if G has no edges.

Technically this is only true if G has at least one vertex. Your book assumes that any graph
satisfies this (and I generally do as well), but sometimes the “null-graph” (the graph with no
vertices) can show up if necessary. Note that the null-graph has chromatic number 0.

A couple more quick observations:

Observation 3. If G is an n-vertex graph, then x(G) < n. Furthermore, x(G) = n if and only if
G2K,.

Observation 4. If H is a subgraph of G, then x(H) < x(G).

From here, we get a simple lower-bound on the chromatic number of a graph in terms of it’s
clique number.

Definition 5. The clique-number of a graph G, denoted by w(G), is the size of the largest clique

contained within G. Note that w(G) = a(G).
By definition, G' contains a copy of K q), which has chromatic number w(G), so:

Observation 6. x(G) > w(G).
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This bound is far from tight. It is know that there are graphs with w(G) = 2, yet x(G) is
arbitrarily large.

Let f: V(G) — C be any proper coloring of G. A color class of this coloring is the set f~1(c)
for any ¢ € C} i.e. the set of vertices which receive color ¢. Since no two adjacent vertices receive the
same color, we observe that every color class is an independent set. In other words, the color classes
of a proper coloring f: V(G) — C partition V(G) into |C| many independent sets. Conversely, if
V(G) = A1 U-- -1 Ay is a partition wherein each A; is an independent set of G, then we can define
a proper coloring f: V(G) — [t] via f(v) =i iff v € A;. Thus, provided we don’t care about the
actual nature of the colors, proper colorings are equivalent to partitions into independent sets.

Observation 7. x(G) is the smallest integer t such that V(G) can be partitioned into t independent
sets. In other words, x(G) is the smallest integer t for which G is t-partite.

In particular, x(G) = 2 if and only if G is bipartite and has at least one edge.
This observation leads to the following lower bound on the chromatic number:

Theorem 8. For any n-vertex graph G,

n
X(G) > ——.
a(G)
Proof. By definition, we can partition V(G) = Ay U--- U AX(G) where each A; is an independent
set in G. Thus, |4;| < a(G) since a(G) is the size of a largest independent set in G. We therefore
bound

x(G) x(G) n
n= 1Al <) a@)=x(@e@) = X0z & O
i=1 i=1

Again, this bound is far from tight in general.

Let’s now discuss an upper bound. Recall the notion of degeneracy from DS3.5.

Definition 9. For a graph G, the degeneracy of G is defined to be
d(G) =max{6(H) : H is a subgraph of G}.

Certainly d(G) < A(G) always. Also, we discussed that d(G) < 1 if and only if G is a forest,
so degeneracy can sometimes be much smaller than the max degree.

Theorem 10. x(G) < d(G) + 1. In particular, x(G) < A(G) + 1.
We give two proofs of this fact.

Proof. We prove the claim by induction on n = |V (G)].

If n =1, then d(G) =0 and x(G) = 1.

Now consider n > 2 and let v € V(G) be a vertex with degv = §(G); note that degv < d(G).
Set H = G —v. Since H is a subgraph of G, we have d(H) < d(G) and so the induction hypothesis
tells us that x(H) < d(H)+ 1 < d(G) + 1. Thus, suppose that f: V(H) — C is a proper coloring
of H where C is some set with |C| = d(G) + 1 (note that, perhaps, many colors could be unused).
We show that we can extend f to a proper coloring of G. Indeed, since |C| = d(G) + 1 and
degv < d(G), there is some color ¢ € C' which is unused by the neighbors of v. Thus, setting
f(v) = ¢, we know that f is now a proper coloring of G using at most d(G) + 1 many colors and so
X(G) <d(G)+1. O



Proof. In DS3.5.2, you showed that there is an ordering V(G) = {vi,...,v,} so that |N(v;) N
{v1,...,vi—1}| < d(G) for all i € [n]. We define a proper coloring f: V(G) — [d(G) + 1] greedily
based on this ordering.

Start by setting f(v1) = 1. For ¢ € {2,...,n}, assuming that f has already been defined on
{v1,...,vi_1}, define f(v;) to be the smallest color not used by the already-colored neighbors of
v; (that is, the smallest color not used in N(v;) N {v1,...,v;_1}). Since there are d(G) + 1 many
available colors and |N(v;) N {vy,...,v;—1}| < d(G), this is always possible.

The resulting coloring f is a proper coloring. Indeed, if vjv; € E(G) where i < j, then
v; € N(vj) N{v1,...,vj—1} and so f(v;) # f(v;) by construction.

Thus, since f uses at most d(G) 4+ 1 many colors, we’ve shown that x(G) < d(G) + 1. O

Degeneracy can oftentimes be difficult to work with theoretically, so it’s usually best to just
keep the bound x(G) < A(G) + 1 in mind.

Let’s finish today by proving a general upper bound on the chromatic number of a triangle-free
graph in terms of its number of vertices. A graph is triangle-free if it has no copy of K3; equivalently
w(G) < 2.

Theorem 11. If G is an n-vertex, triangle-free graph, then x(G) < v/2n.

Proof. We prove the claim by induction on n.

If n = 1, then x(G) = 1 < v/2, so suppose that n > 2.

If A(G) < v/2n — 1, then we would have x(G) < A(G) + 1 < v/2n as needed; thus we may
suppose that A(G) > v/2n — 1. Fix any vertex v € V(G) with degv > v/2n — 1.

Since G is triangle-free, we know that N(v) must be an independent set in G. If V(G) =
N(v) U {v}, then G is bipartite and so x(G) < 2 < v/2n since n > 2, so we may suppose that this
is not the case.

Set H=G — (N(v) U{v}) (deleting vertices). We claim that x(G) < 1+ x(H).

Let Ai, ..., Ay be a partition of V(H) into x(H )-many independent sets; note that x(H) > 1
since H has some vertices. H is an induced subgraph of G and so each A; is also an independent
set in G. Now, v has no neighbors in H and so A; U {v} is also an independent set. Finally, N(v)
is an independent set, and so Ay U {v}, A2,..., Ay (), N(v) is a partition of V(G) into x(H) + 1
many independent sets and so x(G) < 1+ x(H) as claimed.

Now, H is a subgraph of G and so is also triangle-free. Furthermore, H has n —degv — 1 <n
many vertices, so the induction hypothesis tells us that

X(H) < /2(n —degv — 1) < \/2(n — V2n),
since degv > v/2n — 1. Therefore, since n > 2,

MG < 1+ x(H) <14 /20 —vam) <1+ y/2n— 2 + 1= 14 \/(Van — 1) = van. O

Note that our proof actually showed that x(G) < v/2n, unless G = K. It turns out that the
bound in Theorem 11 is not too far from the truth. It is know that if n is large, then

n n
Cq < max X(G) <Oy ,
logn G triangle-free on n vertices logn

for some constants C7, Cs.




