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Recall the following “trees are everywhere” theorem:

Theorem 1 (Trees are everywhere). Let T be any tree on t vertices. If G is any graph with
δ(G) ≥ t− 1, then G contains a copy of T .

This theorem was proved by “greedily embedding” the tree vertex-by-vertex. Also, the theorem
is tight for all t ≥ 2, since Kt−1 has only t− 1 vertices and has δ(Kt−1) = t− 2.

Let’s prove a couple related theorems about when we can embed a tree into a graph.

Theorem 2. Let T be any tree on t vertices. If G is any graph with χ(G) ≥ t, then G contains a
copy of T .

Again, this theorem is tight for all t ≥ 2 sinceKt−1 has only t−1 vertices and has χ(Kt−1) = t−1.
Before we dive into the proof, let’s introduce some terminology:

Definition 3. Let t be a positive integer. A graph G is said to be t-critical if χ(G) ≥ t yet every
proper subgraph H of G has χ(H) ≤ t − 1. That is, G is minimal with respect to the property of
having χ(G) ≥ t.

Note that the only 1-critical graph (up to isomorphism) is K1 (whether or not you consider the
null-graph to be a thing). Also, it is pretty quick to verify that the only 2-critical graph (up to
isomorphism) is K2 (this is a good, quick exercise to help you understand the definition). Finally,
G is 3-critical if and only if G is an odd-cycle; this is a homework exercise. There is no good
classification of t-critical graphs for any t ≥ 4.

t-critical graphs are very useful for proving various statements of the form “If G has property
BLAH1, then χ(G) ≤BLAH2”. Indeed, it is often the case that property BLAH1 is maintained
under taking subgraphs, and:

Proposition 4. If G has χ(G) ≥ t, then G contains a subgraph which is t-critical.

Proof. Let G denote the set of all subgraphs H of G with χ(H) ≥ t. Note that G is non-empty since
G ∈ G. Thus, among all elements of G, let H be one which minimizes |V (H)|+ |E(H)|. We claim
that H is t-critical. Indeed, let H ′ be any proper subgraph of H. Since H ′ is a proper subgraph
of H, we must have |V (H ′)|+ |E(H ′)| < |V (H)|+ |E(H)|. Thus, by the definition of H, we must
have H ′ /∈ G and so χ(H) ≤ t− 1.

Another useful observation about t-critical graphs is that they are “dense”:

Proposition 5. If G is t-critical, then χ(G) = t and δ(G) ≥ t− 1.

Proof. We have already mentioned the case of 1-critical graphs, so suppose that t ≥ 2. Since
χ(G) ≥ t ≥ 2, we know that G has at least two vertices. Let v ∈ V (G) be such that deg v = δ(G)
and setH = G−v, which is a proper subgraph of G. Since G is t-critical, we know that χ(H) ≤ t−1.
Thus, let f : V (H) → [t− 1] be a proper coloring of H.

1. We show first that χ(G) = t. Indeed, extend f to a coloring of G by defining f(v) = t. Since
V (G) = V (H) ⊔ {v}, certainly f is a proper t-coloring of G since color t is un-used in V (H).
Thus χ(G) ≤ t =⇒ χ(G) = t since we already have χ(G) ≥ t by assumption.

https://mathematicaster.org/teaching/graphs2022/extra_04-12.pdf


2. Suppose for the sake of contradiction that δ(G) ≤ t − 2, so deg v ≤ t − 2. But then there
is some color c ∈ [t − 1] which is un-used in N(v) ⊆ V (H) since |N(v)| ≤ t − 2. Defining
f(v) = c, we arrive at a proper (t− 1)-coloring of G; a contradiction since χ(G) ≥ t.

The following observation is not really relevant to the proof of Theorem 2, but it is good to
know:

Proposition 6. If G is t-critical, then G is connected.

Proof. Suppose that G is disconnected and has connected components G1, . . . , Gk for some k ≥ 2.
Observe that χ(G) = maxi∈[k] χ(Gi) (why?) and so there is some i ∈ [k] for which χ(Gi) = χ(G) ≥ t
(really, equals t thanks to Proposition 5, but this is unimportant here). But then Gi is a proper
subgraph of G with χ(Gi) ≥ t, contradicting the fact that G is t-critical.

With the definition of t-critical graphs and the properties we just proved, the proof of Theorem 2
is basically one line (if that one line is long enough)!

Proof of Theorem 2. Since χ(G) ≥ t, we can find a t-critical subgraph H in G thanks to Proposi-
tion 4. Then, thanks to Proposition 5, this H has δ(H) ≥ t− 1. Thus, H contains a copy of T by
Theorem 1 and so G also has a copy of T .

Let’s now prove the following “Ramsey-type” result. We will discuss Ramsey’s theorem toward
the end of the class. For now, a “Ramsey-type” result is any statement of the form: “Either G has
property BLAH1 or G has property BLAH2 (or both)”. We’ve encountered Ramsey-type results
before, e.g.:

• Either G or G is connected.

• If G has n vertices, then either G or G has chromatic number at least
√
n.

Theorem 7 (Chvátal’s Ramsey-type theorem). Let T be any tree on t vertices, let G be any graph
on n vertices and let m be a positive integer. If n ≥ (t − 1)(m − 1) + 1, then either G contains a
copy of T or G contains a copy of Km (or both).

Proof. If m = 1, then the claim is trivial since every graph contains a copy of K1; thus we may
suppose that m ≥ 2.

Suppose that G does not contain a copy of Km; we need to show that G contains a copy of T .
Since G does not contain a copy of Km, we know that ω(G) ≤ m− 1. Of course ω(G) = α(G), so
we bound

χ(G) ≥ n

α(G)
≥ (t− 1)(m− 1) + 1

m− 1
= t− 1 +

1

m− 1
> t− 1.

Since χ(G) and t− 1 are both integers, this implies that χ(G) ≥ t. Thus, G contains a copy of T
thanks to Theorem 2

Chvátal’s theorem is tight for all t,m ≥ 2 (the statement if t = 1 or m = 1 is trivial). Indeed,
if n = (t− 1)(m− 1), consider forming G by taking m− 1 disjoint copies of Kt−1. Since trees are
connected and each connected component of G has only t−1 vertices, we see that G does not contain
a copy of T . On the other hand, G is isomorphic to Kt− 1, . . . , t− 1︸ ︷︷ ︸

m−1

, which is (m− 1)-partite and

thus cannot contain a copy of Km.



We turn now to discussing edge-colorings of a graph. Much like for vertex-colorings, an edge-
coloring is nothing more than a function f : E(G) → C where C is some set of colors. An edge
coloring is said to be proper if f(e) ̸= f(s) whenever e and s share a common vertex. In other
words, proper edge-colorings of G are exactly proper vertex-colorings of the line graph L(G).

Definition 8. The edge-chromatic number or chromatic index of G, denoted by χ′(G), is the
smallest integer t for which G has a proper t-edge-coloring. Equivalently, χ′(G) = χ(L(G)).

Note that χ′(G) = 0 if and only if G has no edges.

Let f : E(G) → C be a proper edge-coloring of G. Then the color classes of f are matchings in
G. In other words, proper edge-colorings are equivalent to partitions of the edges into matchings
(if you don’t care about the actual nature of the colors). To re-iterate this:

Observation 9. χ′(G) is the smallest integer t for which we can partition E(G) into t matchings.

Let’s derive a couple lower bounds on χ′(G).

Proposition 10. For any graph G,

χ′(G) ≥ ∆(G), and χ′(G) ≥ |E(G)|
α′(G)

.

Proof. For each v ∈ V (G), each of the deg v-many edges incident to v must receive different colors;
thus χ′(G) ≥ ∆(G).

By definition, we can partition E(G) = M1 ⊔ · · · ⊔Mχ′(G) where each Mi is a matching in G.
Since α′(G) is the size of a largest matching, we know that |Mi| ≤ α′(G) and so

|E(G)| =
χ′(G)∑
i=1

|Mi| ≤
χ′(G)∑
i=1

α′(G) = χ′(G)α′(G) =⇒ χ′(G) ≥ |E(G)|
α′(G)

.

What about upper bounds?

Proposition 11. If G is any graph with at least one edge, then χ′(G) ≤ 2∆(G)− 1.

Proof. We have χ′(G) = χ(L(G)) ≤ ∆(L(G)) + 1 by our greedy-coloring argument applied to the
line graph.

Now, for any edge uv ∈ E(G), observe that degL(G) uv = degG u+ degG v − 2, and so

χ′(G) ≤ ∆(L(G)) + 1 = 1 + max
uv∈E(G)

(
degG u+ degG v − 2

)
≤ 1 +

(
2∆(G)− 2

)
= 2∆(G)− 1.

Therefore, provided G has some edges,

∆(G) ≤ χ′(G) ≤ 2∆(G)− 1.

It turns out that the possible range for χ′ is even smaller than this!

Theorem 12 (Vizing’s Theorem). If G is any graph, then ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.



So there are only two options for the edge-chromatic number! Although this is the case, it is
still (generally) a difficult task to determine whether χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1.

A proof of Vizing’s theorem would be a bit too involved for us at the moment, so we won’t
prove it here. Also, one quick remark: everything we’ve said so far about χ′ works for multigraphs
as well except for Vizing’s theorem, which requires simple graphs. Vizing’s theorem for multigraphs
states that ∆(G) ≤ χ′(G) ≤ ∆(G) + µ(G) where µ(G) is the largest multiplicity of an edge of G
(so µ(G) = 1 iff G is simple).

Let’s compute a couple edge-chromatic numbers.

Theorem 13. For each integer n ≥ 2,

χ′(Kn) =

{
n− 1 n is even,

n n is odd.

Proof. (Lower bounds): We already know that χ′(Kn) ≥ ∆(Kn) = n− 1 always.
Now, if n is odd, then α′(Kn) = (n− 1)/2, and so

χ′(Kn) ≥
|E(Kn)|
α′(Kn)

=

(
n
2

)
n−1
2

=
n(n−1)

2
n−1
2

= n.

(Upper bounds): It suffices to prove only that χ′(Kn) ≤ n− 1 whenever n is even. Indeed, if n
is odd, then we would have

χ′(Kn) ≤ χ′(Kn+1) ≤ (n+ 1)− 1 = n,

since Kn is a subgraph of Kn+1 and n+ 1 is even.

If n = 2, then certainly χ′(K2) = 2−1 = 1 since K2 has exactly one edge; thus we may suppose
that n ≥ 4 is even.

Set m = n − 1, so m ≥ 3 is odd. We consider labeling the vertex-set of Kn as V (Kn) =
{c}⊔{0, . . . ,m−1}; imagine c as a center vertex and the rest of the m vertices arranged on a circle
around c. When defining the coloring, all arithmetic will be done modulo m; e.g. −x = m− x.

For each i ∈ {0, . . . ,m− 1}, we define

Mi =
{
{c, i}

}
∪
{
{i+ x, i− x} : x ∈ [m− 1]

}
Note that some edges are listed multiple times when defining Mi for convenience; we, of course,
take each of these edges only once.

Below is a picture of the Mi’s when n = 10 (so m = 9).
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If we can show that M0, . . . ,Mm−1 are matchings which cover every edge of Kn, then we will
have shown that χ′(G) ≤ m = n− 1 as needed.

Let’s show first that Mi is a matching for each i ∈ {0, . . . ,m − 1}. Fix any x, y ∈ [m − 1], we
must show that {i+x, i−x} and {i+y, i−y} are either disjoint or equal (i.e. they don’t intersect in
a single vertex). Certainly if i+x = i+y or i−x = i−y, then x = y and so these are the same edge.
Thus, suppose that i+x = i−y or i−x = i+y; both of these cases imply that x+y = 0 (arithmetic
modulo m). In other words x = −y, which implies {i+ x, i− x} = {i− x, i+ x} = {i+ y, i− y} as
needed.

Now we need to show that every edge of Kn is contains in one of these matchings. Fix any
edge xy ∈ E(Kn). If (wlog) x = c, then y ∈ {0, . . . ,m − 1} and so xy ∈ My. Thus, we just need
to consider the case where x, y ∈ {0, . . . ,m− 1}. Since m is odd (and thus 2 and m are coprime),
we can find some i ∈ {0, . . . ,m − 1} such that 2i = x + y (again, arithmetic modulo m). Now,
x ̸= y ∈ {0, . . . ,m− 1} and so either x− i ̸= 0 or y− i ̸= 0; without loss of generality x− i ̸= 0. Set
z = x− i. Since z ∈ [m− 1], we know that {i+ z, i− z} ∈ Mi. Of course, i+ z = i+ (x− i) = x
and i− z = i− (x− i) = 2i− x = y, so xy ∈ Mi, which concludes the proof.


