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These notes are from https://mathematicaster.org/teaching/graphs2022/extra_04-12.pdf

Recall the following “trees are everywhere” theorem:

Theorem 1 (Trees are everywhere). Let T be any tree on t vertices. If G is any graph with
0(G) >t —1, then G contains a copy of T.

This theorem was proved by “greedily embedding” the tree vertex-by-vertex. Also, the theorem
is tight for all ¢ > 2, since K1 has only ¢ — 1 vertices and has §(K;—1) =t — 2.
Let’s prove a couple related theorems about when we can embed a tree into a graph.

Theorem 2. Let T be any tree on t vertices. If G is any graph with x(G) > t, then G contains a
copy of T.

Again, this theorem is tight for all ¢ > 2 since K;_; has only t—1 vertices and has x(K;—1) = t—1.
Before we dive into the proof, let’s introduce some terminology:

Definition 3. Let t be a positive integer. A graph G is said to be t-critical if x(G) >t yet every
proper subgraph H of G has x(H) <t —1. That is, G is minimal with respect to the property of
having x(G) > t.

Note that the only 1-critical graph (up to isomorphism) is K; (whether or not you consider the
null-graph to be a thing). Also, it is pretty quick to verify that the only 2-critical graph (up to
isomorphism) is K» (this is a good, quick exercise to help you understand the definition). Finally,
G is 3-critical if and only if G is an odd-cycle; this is a homework exercise. There is no good
classification of t-critical graphs for any ¢ > 4.

t-critical graphs are very useful for proving various statements of the form “If G has property
BLAH;, then x(G) <BLAHjy”. Indeed, it is often the case that property BLAH; is maintained
under taking subgraphs, and:

Proposition 4. If G has x(G) > t, then G contains a subgraph which is t-critical.

Proof. Let G denote the set of all subgraphs H of G with x(H) > t. Note that G is non-empty since
G € G. Thus, among all elements of G, let H be one which minimizes |V (H)| + |E(H)|. We claim
that H is t-critical. Indeed, let H' be any proper subgraph of H. Since H' is a proper subgraph
of H, we must have |V(H')| + |E(H")| < |V(H)|+ |E(H)|. Thus, by the definition of H, we must
have H' ¢ G and so x(H) <t —1. O

Another useful observation about t-critical graphs is that they are “dense”:
Proposition 5. If G is t-critical, then x(G) =t and 6(G) >t — 1.

Proof. We have already mentioned the case of 1-critical graphs, so suppose that t > 2. Since
X(G) >t > 2, we know that G has at least two vertices. Let v € V(G) be such that degv = §(G)
and set H = G—wv, which is a proper subgraph of G. Since G is t-critical, we know that y(H) < t—1.
Thus, let f: V(H) — [t — 1] be a proper coloring of H.

1. We show first that x(G) = t. Indeed, extend f to a coloring of G by defining f(v) = ¢. Since
V(G) =V (H)U{v}, certainly f is a proper t-coloring of G since color ¢ is un-used in V(H).
Thus x(G) <t = x(G) =t since we already have x(G) > t by assumption.
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2. Suppose for the sake of contradiction that §(G) < t — 2, so degv < ¢t — 2. But then there
is some color ¢ € [t — 1] which is un-used in N(v) C V(H) since |N(v)| < t — 2. Defining
f(v) = ¢, we arrive at a proper (¢t — 1)-coloring of G; a contradiction since x(G) > t. O

The following observation is not really relevant to the proof of Theorem 2, but it is good to
know:

Proposition 6. If G is t-critical, then G is connected.

Proof. Suppose that G is disconnected and has connected components Gy, ..., Gy for some k > 2.
Observe that x(G) = max;cy) X(Gi) (why?) and so there is some i € [k] for which x(G;) = x(G) >t
(really, equals ¢ thanks to Proposition 5, but this is unimportant here). But then G; is a proper
subgraph of G with x(G;) > t, contradicting the fact that G is t-critical. O

With the definition of t-critical graphs and the properties we just proved, the proof of Theorem 2
is basically one line (if that one line is long enough)!

Proof of Theorem 2. Since x(G) > t, we can find a t-critical subgraph H in G thanks to Proposi-
tion 4. Then, thanks to Proposition 5, this H has §(H) >t — 1. Thus, H contains a copy of T by
Theorem 1 and so G also has a copy of T'. 0

Let’s now prove the following “Ramsey-type” result. We will discuss Ramsey’s theorem toward
the end of the class. For now, a “Ramsey-type” result is any statement of the form: “Either G has
property BLAH; or G has property BLAHy (or both)”. We’ve encountered Ramsey-type results
before, e.g.:

e Either G or G is connected.
e If G has n vertices, then either G or G has chromatic number at least \/n.

Theorem 7 (Chvatal’s Ramsey-type theorem). Let T' be any tree on t vertices, let G be any graph
on n vertices and let m be a positive integer. If n > (t —1)(m — 1) + 1, then either G contains a
copy of T or G contains a copy of Ky, (or both).

Proof. If m = 1, then the claim is trivial since every graph contains a copy of Ki; thus we may
suppose that m > 2.

Suppose that G does not contain a copy of K,,; we need to show that G contains a copy of T
Since G does not contain a copy of K, we know that w(G) < m — 1. Of course w(G) = a(G), so

we bound
n_ (t—1)(m—1)+1

G =t—1 >t—1.
X( )_a(G)_ m—1 +m—l
Since x(G) and t — 1 are both integers, this implies that x(G) > ¢t. Thus, G contains a copy of T
thanks to Theorem 2 O

Chvétal’s theorem is tight for all ¢,m > 2 (the statement if t = 1 or m = 1 is trivial). Indeed,
if n = (¢t —1)(m — 1), consider forming G by taking m — 1 disjoint copies of K; 1. Since trees are
connected and each connected component of G has only t—1 vertices, we see that G does not contain
a copy of T. On the other hand, G is isomorphic to Ky 1. t—1 which is (m — 1)-partite and

g ..

m—1

thus cannot contain a copy of K,,.



We turn now to discussing edge-colorings of a graph. Much like for vertex-colorings, an edge-
coloring is nothing more than a function f: E(G) — C where C is some set of colors. An edge
coloring is said to be proper if f(e) # f(s) whenever e and s share a common vertex. In other
words, proper edge-colorings of G are exactly proper vertex-colorings of the line graph L(G).

Definition 8. The edge-chromatic number or chromatic index of G, denoted by X' (G), is the
smallest integer t for which G has a proper t-edge-coloring. Equivalently, x'(G) = x(L(G)).

Note that x/(G) = 0 if and only if G has no edges.

Let f: E(G) — C be a proper edge-coloring of G. Then the color classes of f are matchings in
G. In other words, proper edge-colorings are equivalent to partitions of the edges into matchings
(if you don’t care about the actual nature of the colors). To re-iterate this:

Observation 9. \/'(G) is the smallest integer t for which we can partition E(G) into t matchings.
Let’s derive a couple lower bounds on x/(G).

Proposition 10. For any graph G,

X'(G) > A(G), and X' (G)> G

Proof. For each v € V(G), each of the deg v-many edges incident to v must receive different colors;

thus Y (G) > A(G).

By definition, we can partition E(G) = My U --- U M,y where each M; is a matching in G.
Since o/ (G) is the size of a largest matching, we know that |M;| < o/(G) and so

X' (G) X' (G) |
E@G)| =M< ) o(G)=x(G)(G) = X (G) >
=1

=1

EG)]
o/ (G)

What about upper bounds?
Proposition 11. If G is any graph with at least one edge, then X'(G) < 2A(G) — 1.

Proof. We have x'(G) = x(L(G)) < A(L(G)) + 1 by our greedy-coloring argument applied to the
line graph.
Now, for any edge uv € E(G), observe that degy, ) uv = degg u + degg v — 2, and so

X (G) <ALG)+1=1+ mgz(G)(degGu +deggv—2) <14 (2A(G) —2) =2A(G)—1. O
uve

Therefore, provided G has some edges,
A(G) < X(G) <2A(G) — 1.
It turns out that the possible range for x’ is even smaller than this!

Theorem 12 (Vizing’s Theorem). If G is any graph, then A(G) < X'(G) < A(G) + 1.



So there are only two options for the edge-chromatic number! Although this is the case, it is
still (generally) a difficult task to determine whether x'(G) = A(G) or X' (G) = A(G) + 1.

A proof of Vizing’s theorem would be a bit too involved for us at the moment, so we won’t
prove it here. Also, one quick remark: everything we’ve said so far about y’ works for multigraphs
as well except for Vizing’s theorem, which requires simple graphs. Vizing’s theorem for multigraphs
states that A(G) < X'(G) < A(G) + u(G) where u(G) is the largest multiplicity of an edge of G
(so u(G) = 1iff G is simple).

Let’s compute a couple edge-chromatic numbers.
Theorem 13. For each integer n > 2,

n—1 n s even,
X/(Kn) = {

n n is odd.

Proof. (Lower bounds): We already know that x'(K,) > A(K,) = n — 1 always.
Now, if n is odd, then o/(K,) = (n —1)/2, and so

B(K n n(n—1)
of(Kn) B A
(Upper bounds): It suffices to prove only that x'(K,) < n — 1 whenever n is even. Indeed, if n

is odd, then we would have
X/(Kn) < X/(Kn+1) (n+1)-1=mn,
since K, is a subgraph of K, and n + 1 is even.

If n = 2, then certainly x'(K2) = 2—1 = 1 since K> has exactly one edge; thus we may suppose
that n > 4 is even.

Set m = n —1, so m > 3 is odd. We consider labeling the vertex-set of K, as V(K,) =
{c}U{0,...,m—1}; imagine c as a center vertex and the rest of the m vertices arranged on a circle
around c¢. When defining the coloring, all arithmetic will be done modulo m; e.g. —x =m — .

For each i € {0,...,m — 1}, we define

M; = {{c,i}}u{{i+x,ix}:x6 [ml]}

Note that some edges are listed multiple times when defining M; for convenience; we, of course,
take each of these edges only once.
Below is a plcture of the M;’s when n = 10 (so m = 9).

@




My

If we can show that My, ..., M,,_1 are matchings which cover every edge of K, then we will
have shown that x'(G) < m =mn — 1 as needed.

Let’s show first that M; is a matching for each ¢ € {0,...,m — 1}. Fix any x,y € [m — 1], we
must show that {i+z,i—x} and {i+y,7—y} are either disjoint or equal (i.e. they don’t intersect in
a single vertex). Certainly if i+x = i+y or i—x = i—y, then x = y and so these are the same edge.
Thus, suppose that i+x = i—y or i—x = i+y; both of these cases imply that x+y = 0 (arithmetic
modulo m). In other words x = —y, which implies {i + z,i —x} = {i —z,i+ 2z} ={i+y,i — y} as
needed.

Now we need to show that every edge of K, is contains in one of these matchings. Fix any
edge zy € E(K,,). If (wlog) x = ¢, then y € {0,...,m — 1} and so zy € M,. Thus, we just need
to consider the case where x,y € {0,...,m — 1}. Since m is odd (and thus 2 and m are coprime),
we can find some i € {0,...,m — 1} such that 2i = = + y (again, arithmetic modulo m). Now,
x#y€{0,...,m—1} and so either x —i # 0 or y —i # 0; without loss of generality = —i # 0. Set
z =x — 1. Since z € [m — 1], we know that {i + z,i — z} € M;. Of course, i +z =i+ (x —i) ==z
andi—z=1— (x—1i) =2i—x =y, soxy € M;, which concludes the proof. O



