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These notes are from https://mathematicaster.org/teaching/graphs2022/extra_05-03.pdf

Recall that for graphs G,H, the graph G is said to be H-free if G does not contain a copy of
H.

Today we explore the following natural question: How many edges can an H-free graph have?

Definition 1. Let H be a graph. The extremal number (or Turán number) of H is defined to be

ex(n,H) = max
{
|E(G)| : G an n-vertex, H-free graph

}
.

A bit of jargon as well: G is said to be an extremal example for ex(n,H) if G is an n-vertex,
H-free graph and has |E(G)| = ex(n,H), i.e. G is an example of such a graph with the maximum
possible number of edges. We will also say that G is the unique extremal example if any extremal
example is isomorphic to G.

Let’s start with two silly examples:

• ex(n,K2) = 0 and the unique extremal example is Kn.

Indeed, any edge is a copy of K2.

• ex(n, P3) = ⌊n/2⌋ and the unique extremal example is a matching on ⌊n/2⌋ many edges.

Indeed, any pair of incident edges create a copy of P3.

Let’s now meet our first really interesting example: triangle-free graphs. To begin, note that
K⌈n/2⌉,⌊n/2⌋ is an n-vertex, triangle-free graph, so

ex(n,K3) ≥ |E(K⌈n/2⌉,⌊n/2⌋)| =
⌈
n

2

⌉⌊
n

2

⌋
=

⌊
n2

4

⌋
.

It turns out that you can’t do any better!

Theorem 2 (Mantel). ex(n,K3) = ⌊n2/4⌋ and the unique extremal example is K⌈n/2⌉,⌊n/2⌋.

Proof. Let G = (V,E) be an n-vertex, triangle-free graph. We need to show that |E| ≤ ⌊n2/4⌋
with equality if and only if G ∼= K⌈n/2⌉,⌊n/2⌋.

Set α = α(G) and let A be a maximum independent set of G, so |A| = α. Recall HW2.5:∑
v∈A

deg v ≤ |E|,

with equality if and only if V \A is also an independent set.
Next, since G is triangle-free, N(v) is an independent set for all v ∈ V and so deg v ≤ α. We

therefore bound

2|E| =
∑
v∈V

deg v =
∑
v∈A

deg v +
∑

v∈V \A

deg v ≤ |E|+
∑

v∈V \A

α = |E|+ (n− α)α =⇒ |E| ≤ (n− α)α,

with equality if and only if V \ A is also an independent set and deg v = α for all v ∈ V \ A. In
other words, equality above holds iff G ∼= Kα,n−α.
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Now, we apply the AM–GM inequality to bound

(n− α)α ≤ ((n− α) + α)2

4
=

n2

4
,

with equality iff α = n/2. Of course, n and α are both integers, so α = n/2 is impossible if n is
odd. However, a very slight modification of the proof of the AM–GM inequality yields

(n− α)α ≤
⌊
n2

4

⌋
,

with equality if and only if α ∈
{
⌊n/2⌋, ⌈n/2⌉

}
.

Putting everything together, we have shown that |E| ≤ ⌊n2/4⌋ with equality if and only if
G ∼= K⌈n/2⌉,⌊n/2⌋.

What’s next? Well, we now understand ex(n,K2) and ex(n,K3), so let’s figure out ex(n,Kt)
for larger values of t.

We first try to find a good construction for ex(n,Kt). First consider a complete multipartite with
r ≤ t− 1 many parts; since Kt is t-partite, this graph cannot contain a copy of Kt. Furthermore,
if this complete multipartite graph has parts A1, . . . , Ar (r ≤ t− 1), then it has(

n

2

)
−

r∑
i=1

(
|Ai|
2

)
many edges. How should we pick r ≤ t− 1 and the Ai’s so as to maximize the above quantity?

Let Tk(n) denote the balanced complete k-partite graph on n vertices (often known as “the
Turán graph”). Here, “balanced” means that the sizes of any two parts differ by at most one, i.e.
the part-sizes are as close to equal as possible. This means that each part has size either ⌊n/k⌋ or
⌊n/k⌋+ 1. Note that T2(n) = K⌈n/2⌉,⌊n/2⌋.

If n mod k = r, then Tk(n) has r parts of size ⌊n/k⌋+ 1 and k − r parts of size ⌊n/k⌋, so

|E(Tk(n))| =
(
n

2

)
− r

(
⌊n/k⌋+ 1

2

)
− (k − r)

(
⌊n/k⌋

2

)
.

Now, when n is large, this is approximately

|E(Tk(n))| ≈
n2

2
− k

(n/k)2

2
=

(
1− 1

k

)
n2

2
≈

(
1− 1

k

)(
n

2

)
,

so Tk(n) has approximately a 1− 1
k proportion of all possible edges, which is quite a bit!

We claim that Tt−1(n) is the “best” complete multipartite graph for avoiding Kt’s.

Lemma 3. If G is an n-vertex, complete multipartite, Kt-free graph, then |E(G)| ≤ |E(Tt−1(n))|
with equality if and only if G ∼= Tt−1(n).

Proof. Let G = (V,E) be such a graph with the maximum number of edges; we claim that G ∼=
Tt−1(n) which implies the claim.

Since G is complete multipartite, we may denote the parts by A1, . . . , Ar for some r where each
Ai is non-empty. We begin by noting that r ≤ t− 1 or else we could pick one vertex from the first
t parts to find a copy of Kt (since G has all edges between every pair of parts).



Now, if r < t− 1, then introduce t− 1− r many independent sets, so that we can assume that
G is a complete multipartite graph with parts A1, . . . , At−1, where some parts may be empty. If
we can show that ∣∣|Ai| − |Aj |

∣∣ ≤ 1,

for all i ̸= j ∈ [t− 1], then we will have shown that G ∼= Tt−1(n).
Suppose for the sake of contradiction that there is some i ̸= j ∈ [t−1] for which

∣∣|Ai|−|Aj |
∣∣ ≥ 2.

By relabeling the Aℓ’s if necessary, we may suppose that |A1| ≥ |A2|+2. Then let G′ be the complete
multipartite graph with parts A′

1, A
′
2, A3, . . . , At−1 where |A′

1| = |A1| − 1 and |A′
2| = |A2| + 1 (i.e.

move one vertex from A1 to A2). We find that the number of edges from A′
1∪A′

2 to A3∪ · · · ∪At−1

in G′ is precisely the same as the number of edges from A1 ∪A2 to A3 ∪ · · · ∪At−1 in G. Therefore,
setting x = |A1| and y = |A2| (so x ≥ y + 2), we have

|E(G′)| − |E(G)| = |A′
1| · |A′

2| − |A1| · |A2| = (x− 1)(y + 1)− xy = x− y − 1 ≥ 1;

a contradiction to the maximality of G.

Theorem 4 (Turán). ex(n,Kt) = |E(Tt−1(n))| ≈
(
1 − 1

t−1

)(
n
2

)
and the unique extremal graph is

Tt−1(n).

Note that Turán’s theorem implies Mantel’s theorem. Also, there are tons and tons of proofs
of Turán’s theorem. Since this is our last day and I’m not expecting you to solve questions along
these lines, I want to share the most clever proof that I’ve ever seen of it.

Proof. Let G = (V,E) be an n-vertex, Kt-free graph with the maximum number of edges possible.
We claim that G ∼= Tt−1(n) which will prove the claim. By Lemma 3, it suffices to show that G is
a complete multipartite graph.

Claim 5. For any three distinct vertices x, y, z ∈ V , if xy, yz /∈ E, then also xz /∈ E.

Proof. Suppose for the sake of contradiction that xz ∈ E. Without loss of generality, we may
suppose that deg z ≥ deg x. We break into cases depending on the degree of y.

Case 1: deg y < deg z. Create a new graph G′ by deleting y and “duplicating” z. By “dupli-
cating” z, we mean introduce a new vertex z′ which has the same neighborhood as z (note that z
and z′ are not adjacent). Certainly G′ also has n vertices (we deleted one and added another); we
claim that G′ additionally has no copy of Kt.

Indeed, if G′ contains a copy of Kt, then such a copy must use the vertex z′ since otherwise
this would be a copy of Kt in G. But if it uses z′, then it cannot use z since zz′ /∈ E(G′). However,
since z′ is a duplicate of z, we may replace z′ by z to find a copy of Kt in G, which we know is
impossible.

Thus, G′ is an n-vertex, Kt-free graph. However, since deg y < deg z and yz /∈ E, we have

|E(G′)| = |E| − deg y + deg z > |E|;

a contradiction to the maximality of G.

Case 2: deg y ≥ deg z. Create a new graph G′ by deleting both x and z and duplicating y twice.
This new graph G′ still has n vertices and, by the same logic as above (duplicating a vertex cannot
suddenly introduce a copy of Kt), G

′ is Kt-free. However, since deg y ≥ deg z ≥ deg x, xy, yz /∈ E
and xz ∈ E, we have

|E(G′)| = |E| − (deg x+ deg z − 1) + 2 deg y ≥ |E|+ 1 > |E|;



a contradiction to the maximality of G.

Now, define the relation R on V by xRy ⇐⇒ xy /∈ E. Certainly R is reflexive and symmetric,
and the above claim tells us that R is also transitive. So R is actually an equivalence relation!
Therefore, let label the equivalence classes of R as A1, . . . , Ar for some r. By definition G has no
edges within any Ai and G contains every edge between Ai and Aj for all i ̸= j. In other words, G
is a complete multipartite graph and so the claim follows from Lemma 3.

Now that we understand the extremal numbers of cliques in general, let’s work on another small
graph: the four-cycle.

Theorem 6 (Kővári–Sós–Turán (special case)). ex(n,C4) ≤ n
4

(
1 +

√
4n− 3

)
≈ 1

2n
3/2.

The full Kővári–Sós–Turán theorem gives an upper bound on ex(n,Ks,t) (note that C4
∼= K2,2).

In order to prove this, we will require a special case of the Cauchy–Schwarz inequality, which
is arguably the most important inequality in all of mathematics.

Lemma 7 (Cauchy–Schwarz inquality). For any real numbers a1, . . . , an, b1, . . . , bn.( n∑
i=1

aibi

)2

≤
n∑

i=1

a2i ·
n∑

i=1

b2i .

The full Cachy–Schwarz inequality is an inequality for general inner products.

Proof. We expand

0 ≤ 1

2

∑
i,j

(aibj − ajbi)
2 =

1

2

∑
i,j

(a2i b
2
j + a2jb

2
i − 2aibiajbj)

=
∑
i,j

a2i b
2
j −

∑
i,j

aibiajbj =
∑
i

a2i ·
∑
i

b2i −
(∑

i

aibi

)2

.

Explicitly, we will use the following corollary:

Corollary 8. For any real numbers a1, . . . , an,

n∑
i=1

a2i ≥
1

n

( n∑
i=1

ai

)2

.

Proof. We apply Cauchy–Schwarz to bound

n ·
n∑

i=1

a2i =

n∑
i=1

12 ·
n∑

i=1

a2i ≥
( n∑

i=1

1 · ai
)2

=

( n∑
i=1

ai

)2

.

Proof of Kővári–Sós–Turán. Let G = (V,E) be an n-vertex, C4-free graph. We need to show that
|E| ≤ n

4

(
1 +

√
4n− 3

)
.

Fix any x ̸= y ∈ V ; we begin by observing that |N(x) ∩ N(y)| ≤ 1. Indeed, if there were
u ̸= v ∈ N(x) ∩N(y), then (x, u, y, v) would create a 4-cycle.

In particular,
(
N(x)
2

)
∩
(
N(y)
2

)
= ∅ for every x ̸= y ∈ V . Of course,

(
N(x)
2

)
⊆

(
V
2

)
for each x, so,

using these observations, we bound(
n

2

)
=

∣∣∣∣(V2
)∣∣∣∣ ≥ ∣∣∣∣ ⊔

x∈V

(
N(x)

2

)∣∣∣∣ = ∑
x∈V

∣∣∣∣(N(x)

2

)∣∣∣∣ = ∑
x∈V

(
deg x

2

)
=

1

2

∑
x∈V

(
deg2 x− deg x

)
.



From here, we apply Cauchy–Schwarz and the handshaking lemma to bound(
n

2

)
≥ 1

2

∑
x∈V

(
deg2 x− deg x

)
=

1

2

(∑
x∈V

deg2 x

)
− |E|

≥ 1

2
· 1
n

(∑
x∈V

deg x

)2

− |E| = 2|E|2

n
− |E|.

Solving for |E| in this inequality, we get

|E| ≤ n

4

(
1 +

√
4n− 3

)
.


