MATH 314 Extra Notes May 3

These notes are from https://mathematicaster.org/teaching/graphs2022/extra_05-03.pdf

Recall that for graphs G, H, the graph G is said to be H-free if G does not contain a copy of
H.
Today we explore the following natural question: How many edges can an H-free graph have?

Definition 1. Let H be a graph. The extremal number (or Turdn number) of H is defined to be
ex(n, H) = max{|E(G)| : G an n-vertez, H-free graph}.

A bit of jargon as well: G is said to be an extremal example for ex(n, H) if G is an n-vertex,
H-free graph and has |E(G)| = ex(n, H), i.e. G is an example of such a graph with the maximum
possible number of edges. We will also say that G is the unique extremal example if any extremal
example is isomorphic to G.

Let’s start with two silly examples:

e ex(n, Ks) = 0 and the unique extremal example is K.

Indeed, any edge is a copy of K.

e ex(n, P3) = |n/2| and the unique extremal example is a matching on |n/2] many edges.

Indeed, any pair of incident edges create a copy of Ps.

Let’s now meet our first really interesting example: triangle-free graphs. To begin, note that
Ky 21,1n/2) 18 an n-vertex, triangle-free graph, so

ex(n, K3) 2 [E(Kpp /21, |n/2))| = m BJ - MQJ

It turns out that you can’t do any better!
Theorem 2 (Mantel). ex(n, K3) = [n?/4| and the unique extremal example is Kiny21,1n/2) -

Proof. Let G = (V,E) be an n-vertex, triangle-free graph. We need to show that |E| < [n?/4]
with equality if and only if G = K[”/QLL”/% .
Set o = a(G) and let A be a maximum independent set of G, so |A| = a. Recall HW2.5:

Zdegv < |E|,

vEA

with equality if and only if V' \ A is also an independent set.
Next, since G is triangle-free, N(v) is an independent set for all v € V and so degv < a. We
therefore bound

2|E| = Zdegv = Zdegv+ Z degv < |E| + Z a=El+(n—a)a = |E| < (n—a)a,
veV vEA veV\A veV\A

with equality if and only if V' \ A is also an independent set and degv = « for all v € V' \ A. In
other words, equality above holds iff G = K, 5,—q.
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Now, we apply the AM—GM inequality to bound

(n—a)+a)? n?
_ <N T
(n—a)a < 1 1
with equality iff & = n/2. Of course, n and « are both integers, so &« = n/2 is impossible if n is
odd. However, a very slight modification of the proof of the AM—GM inequality yields

(n - a)a < m

with equality if and only if a € {|n/2], [n/2]}.

Putting everything together, we have shown that |E| < |n?/4] with equality if and only if
G = Kpny2),1n/2)- =

What’s next? Well, we now understand ex(n, K2) and ex(n, K3), so let’s figure out ex(n, K;)
for larger values of t.

We first try to find a good construction for ex(n, K;). First consider a complete multipartite with
r <t — 1 many parts; since K; is t-partite, this graph cannot contain a copy of K;. Furthermore,
if this complete multipartite graph has parts A;,..., A4, (r <t —1), then it has

() -2 (%)

many edges. How should we pick » <t — 1 and the A;’s so as to maximize the above quantity?

Let Ty(n) denote the balanced complete k-partite graph on n vertices (often known as “the
Turén graph”). Here, “balanced” means that the sizes of any two parts differ by at most one, i.e.
the part-sizes are as close to equal as possible. This means that each part has size either [n/k| or
In/k| + 1. Note that Ta(n) = K[”/ﬂv[”/ﬂ

If n mod k = r, then T(n) has r parts of size |n/k| + 1 and k — r parts of size [n/k], so

= (5) ("5 ) - w-n(1Y)

Now, when n is large, this is approximately

pao) = -k = (=)= (- 1) (4),

so Tr(n) has approximately a 1 — % proportion of all possible edges, which is quite a bit!
We claim that T;_1(n) is the “best” complete multipartite graph for avoiding K’s.

Lemma 3. If G is an n-vertex, complete multipartite, K;-free graph, then |E(G)| < |E(Ti—1(n))]
with equality if and only if G = Ti_1(n).

Proof. Let G = (V, E) be such a graph with the maximum number of edges; we claim that G =
T;—1(n) which implies the claim.

Since GG is complete multipartite, we may denote the parts by Ay, ..., A, for some r where each
A; is non-empty. We begin by noting that r <¢ — 1 or else we could pick one vertex from the first
t parts to find a copy of K; (since G has all edges between every pair of parts).



Now, if r < t — 1, then introduce t — 1 — r many independent sets, so that we can assume that
G is a complete multipartite graph with parts Aj,..., A;_1, where some parts may be empty. If
we can show that
|1 4il = 4] <1,

for all i # j € [t — 1], then we will have shown that G = T;_;(n).

Suppose for the sake of contradiction that there is some i # j € [t—1] for which HA@] —|A4; H > 2.
By relabeling the A,’s if necessary, we may suppose that |A1| > |A2|4+2. Then let G’ be the complete
multipartite graph with parts A}, A}, As, ..., A;—1 where |A]| = |A1] — 1 and |A}| = |42+ 1 (i.e.
move one vertex from A; to Az). We find that the number of edges from A} U A, to AgU---UA;_;
in G’ is precisely the same as the number of edges from A; U Ay to A3U---UA;_1 in G. Therefore,
setting x = |A;| and y = |As| (so x > y + 2), we have

|E(G)| = |E(G)| = |AL] - [A5] = |[As] - [As] = (@ = Dy + 1) —ay =2 -y -1 > L;
a contradiction to the maximality of G. O

Theorem 4 (Turdn). ex(n,K;) = |E(Ti—1(n))| = (1 — &) (5) and the unique extremal graph is
thl(n).

Note that Turan’s theorem implies Mantel’s theorem. Also, there are tons and tons of proofs
of Turan’s theorem. Since this is our last day and I'm not expecting you to solve questions along
these lines, I want to share the most clever proof that I’ve ever seen of it.

Proof. Let G = (V, E) be an n-vertex, K;-free graph with the maximum number of edges possible.
We claim that G = T;_;(n) which will prove the claim. By Lemma 3, it suffices to show that G is
a complete multipartite graph.

Claim 5. For any three distinct vertices x,y,z € V, if xy,yz ¢ E, then also xz ¢ E.

Proof. Suppose for the sake of contradiction that xz € E. Without loss of generality, we may
suppose that deg z > degx. We break into cases depending on the degree of y.

Case 1: degy < degz. Create a new graph G’ by deleting y and “duplicating” z. By “dupli-
cating” z, we mean introduce a new vertex z’ which has the same neighborhood as z (note that z
and 2’ are not adjacent). Certainly G’ also has n vertices (we deleted one and added another); we
claim that G’ additionally has no copy of K;.

Indeed, if G’ contains a copy of K, then such a copy must use the vertex z’ since otherwise
this would be a copy of Ky in G. But if it uses 2/, then it cannot use z since zz’ ¢ E(G’). However,
since 2’ is a duplicate of z, we may replace z’ by z to find a copy of K; in G, which we know is
impossible.

Thus, G’ is an n-vertex, Ki-free graph. However, since degy < deg z and yz ¢ F, we have
|E(G")| = |E| — degy +degz > |E;
a contradiction to the maximality of G.

Case 2: degy > deg 2. Create a new graph G’ by deleting both x and z and duplicating y twice.
This new graph G’ still has n vertices and, by the same logic as above (duplicating a vertex cannot
suddenly introduce a copy of K;), G’ is K-free. However, since degy > deg z > degz, zy,yz ¢ F
and zz € E, we have

|E(G')| = |E| — (degz + degz — 1) +2degy > |E| + 1 > |E;



a contradiction to the maximality of G. O

Now, define the relation R on V by z Ry <= zy ¢ E. Certainly R is reflexive and symmetric,
and the above claim tells us that R is also transitive. So R is actually an equivalence relation!

Therefore, let label the equivalence classes of R as Ay,..., A, for some r. By definition G has no
edges within any A; and G contains every edge between A; and A; for all 7 # j. In other words, G
is a complete multipartite graph and so the claim follows from Lemma 3. 0

Now that we understand the extremal numbers of cliques in general, let’s work on another small
graph: the four-cycle.

Theorem 6 (Kévari-Sés—Turén (special case)). ex(n,Cy) < 2 (14 v4n —3) ~ %n3/2.
The full K6vari-Sés-Turdn theorem gives an upper bound on ex(n, K ;) (note that Cy = Kj 7).

In order to prove this, we will require a special case of the Cauchy—Schwarz inequality, which
is arguably the most important inequality in all of mathematics.

Lemma 7 (Cauchy—Schwarz inquality). For any real numbers ay, ..., apn, b1, ..., by.

n 2 n n
(Sat) <> at- Yo
i=1 i=1 i=1
The full Cachy—Schwarz inequality is an inequality for general inner products.
Proof. We expand
1 1
0 < 5 Z(aibj — ajbi)Q = 5 Z(afb? + a?blz — 2aibiajbj)
2 i,

2
= E a?b? — E aibiajbj = E CLZ2 . E bz2 — ( E albz> . L]
Y] 1, ( @ '

7

Explicitly, we will use the following corollary:

Corollary 8. For any real numbers aq, ..., an,
n ) 1 n 2
>z (D
n A\~
=1 =1

Proof. We apply Cauchy—Schwarz to bound

n n n n 2 n 2
ey ad=Y Y ez (Yia) = (Xa) . 0
i=1 i=1 i=1 i=1 i=1
Proof of Kévari-Sés—Turdn. Let G = (V, E) be an n-vertex, Cy-free graph. We need to show that
|E| < 3(1++4n —=3).
Fix any x # y € V; we begin by observing that |N(x) N N(y)| < 1. Indeed, if there were
u#v € N(x) N N(y), then (z,u,y,v) would create a 4-cycle.
In particular, (Néx)) N (Néy)) = o for every x # y € V. Of course, (Néx)) - (‘2/) for each z, so,
using these observations, we bound

B)=1G)L )=

zeV zeV

()= 35 (45) = 5 et - e,

zeV eV




From here, we apply Cauchy—Schwarz and the handshaking lemma to bound

(3) 2§ ot e i) = (S o) -1

zeV zeV

11 2 2| B2
5 n(z degx) — |B|==— —|E|.

eV

v

Solving for |E| in this inequality, we get

Bl < 5 (1+vin =3).



