

This homework is from <https://mathematicaster.org/teaching/graphs2022/hw3.pdf>

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem.

Problem 1 (2 pts). Let G be a graph on n vertices. Prove that if $\Delta(G) + \delta(G) \geq n - 1$ then G is connected.

Problem 2 (2 pts). Let G be a graph with the property that $\deg u + \deg v \equiv 1 \pmod{2}$ for every $uv \in E(G)$. Prove that $|E(G)|$ is even.

Problem 3 (2 pts). Let G be a connected graph and suppose that $f: V(G) \rightarrow \mathbb{Z}$ is a function with the property that $f(u) + f(v) \equiv 0 \pmod{3}$ for every $uv \in E(G)$. Prove that if G is *not* bipartite, then $f(v) \equiv 0 \pmod{3}$ for every $v \in V(G)$.

Problem 4 (2 pts). Let G be a graph on n vertices. Prove that $\delta(G) + \delta(\overline{G}) \leq n - 1$ with equality if and only if G is regular.

Problem 5 (1 + 1 pts). Determine whether or not the following sequences are graphical. If the sequence is graphical, draw a picture of a graph with that degree sequences. If the sequence is not graphical, prove this.

1. 5, 3, 3, 3, 2, 2, 2, 1

2. 6, 5, 5, 4, 3, 2, 1