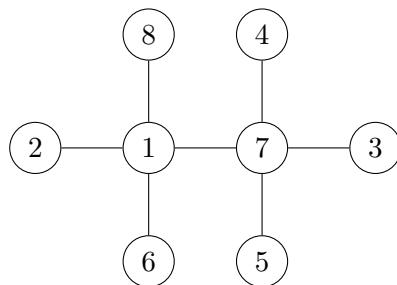


This homework is from <https://mathematicaster.org/teaching/graphs2022/hw6.pdf>

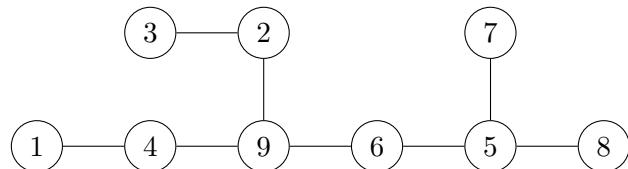
Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem.

Problem 1 (0.5 + 0.5 pts). Determine the Prüfer code of the following trees (using the standard ordering of the integers).

1.



2.



Problem 2 (0.5 + 0.5 pts). For the following sequences, draw a picture of the (labeled) tree which has that sequence as its Prüfer code (using the standard ordering of the integers). Your tree should have vertex-set $[n]$ for some integer n .

1. (5, 7, 5, 1, 3, 5, 5)

2. (4, 4, 1, 2, 1, 2, 3)

Problem 3 (1 pts). Determine (with proof) all trees T (up to isomorphism) on $n \geq 2$ vertices whose Prüfer code uses each element of $V(T)$ at most once (under any arbitrary ordering of $V(T)$).

Problem 4 (2 pts). (HW5.3 revisited) Fix an integer $n \geq 2$ and let d_1, \dots, d_n be a sequence of positive integers with $\sum_{i=1}^n d_i = 2n - 2$. Use Prüfer codes to show that there is a tree with degree sequence d_1, \dots, d_n .

Problem 5 (2 pts). For a graph G , define the relation R on $V(G)$ by $u R v$ if and only if $u = v$ or there is a cycle in G containing both u and v . Find a graph G wherein R is *not* an equivalence relation on $V(G)$. (You are welcome to define G via a picture, though, of course, you must still demonstrate that R is not an equivalence relation on this G)

Problem 6 (3 pts). For a graph G , define the relation R on $E(G)$ by $e R s$ if and only if $e = s$ or there is a cycle in G containing both e and s . Prove that R is an equivalence relation on $E(G)$.