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These notes are from https://mathematicaster.org/teaching/graphs2022/prufer.pdf

How many trees are there on a fixed vertex set? For a nonempty set V , let TV be the set of all
trees on vertex-set V .

Theorem 1 (Cayley’s formula). If |V | = n ≥ 2, then |TV | = nn−2.

Phrased differently, the above theorem states that for each n ≥ 2, the clique Kn has exactly
nn−2 spanning trees.

Note that we are counting “labeled trees” and not “trees up to isomorphism”. For example,
there are 3 trees on vertex-set [3], but there is only one tree on three vertices up to isomorphism.1

In order to prove this, we will define a bijection from TV to V n−2 which will imply Cayley’s
formula since |V | = n and so |V n−2| = nn−2. This bijection works by mapping a tree to what is
called a Prüfer code. In order to define this, we will need to enforce an ordering on V . To this end,
we say that a set V is ordered if we can label V = {v1, . . . , vn} such that v1 < · · · < vn (note that <
does not need to be our usual notion of ordering of real numbers; it is simply a way to enforce some
ordering on the elements). Note that any finite set can be turned into an ordered set by enforcing
some arbitrary order, so we do not lose any generality by looking at ordered sets.

For an ordered set V with |V | = n ≥ 2, we define a function

PrüferV : TV → V n−2

recursively as follows:

1. If n = 2, then define PrüferV (T ) = (); the empty-sequence.

2. If n ≥ 3 and T ∈ TV , let ℓ ∈ V be the smallest (with respect to the ordering on V ) leaf of T .
Let v ∈ V be the unique neighbor of ℓ in T and define

PrüferV (T ) =
(
v,PrüferV \{ℓ}(T − ℓ)

)
.

Technically speaking, as we just defined things, the output of PrüferV would be something like
(2, (2, (1, (4, ())))), but we will simply drop parentheses and write (2, 2, 1, 4). With this identifica-
tion, we see that PrüferV is well-defined. For a tree T ∈ TV , PrüferV (T ) is known as the Prüfer
code of T .

Informally, to build the Prüfer code associated with T , we delete the smallest leaf of T , write
down the neighbor of that leaf and repeat until there are just two vertices left. Here are two
examples (I apologize in advance for my poorly drawn pictures):

1. Example 1:

1This issue gets worse as n gets larger. For example, Cayley’s formula states that there are 75 = 17807 trees
with vertex-set [7]; however, there are only 11 trees on 7 vertices up to isomorphism. There is no known closed-form
expression for the number of trees on n vertices up to isomorphism. See https://oeis.org/A000055 for a list of
some known values, though. With other ideas that you may encounter in a general enumerative combinatorics class
(Catalan numbers and rooted plane trees), one can show that there are at most 1

n+1

(
2n
n

)
≤ 4n trees on n vertices

up to isomorphism (though this is far from tight), which is much, much, much smaller than nn−2 for large n. I’ve
included supplementary notes about this topic on the webpage if you’re interested in learning more.

https://mathematicaster.org/teaching/graphs2022/prufer.pdf
https://oeis.org/A000055
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Thus, for this tree T ∈ T[7], we have Prüfer[7](T ) = (1, 1, 1, 1, 3).

2. Example 2:
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Thus, for this tree T ∈ T[8], we have Prüfer[8](T ) = (2, 2, 3, 8, 4, 8).

We claim that PrüferV is a bijection, which will establish Cayley’s formula. In order to do so,
we will need to understand a little about the structure of PrüferV (T ).

Lemma 2. Fix any ordered set V with |V | = n ≥ 2. For every v ∈ V and any T ∈ TV , v appears
exactly degT v − 1 many times in the sequence PrüferV (T ).

Proof. We prove this by induction on n.
The base case of n = 2 is clear since the only tree on two vertices is a single edge and its Prüfer

code is the empty list.
Now suppose that n ≥ 3, let V be any ordered set with |V | = n and fix any T ∈ TV . Fix any

v ∈ V ; we need to show that v appears exactly degT v − 1 many times in PrüferV (T ).
Suppose first that v is the smallest leaf of T ; then degT v = 1 and v never appears in PrüferV (T ).

Next, suppose that ℓ ̸= v is the smallest leaf of T and that u is the unique neighbor of ℓ. Then we
have

PrüferV (T ) =
(
u,PrüferV \{ℓ}(T − ℓ)

)
.



Since v ̸= ℓ, v ∈ V \ {ℓ} and so, by the induction hypothesis, v appears exactly degT−ℓ v − 1 times
in PrüferV \{ℓ}(T − ℓ). If v ̸= u, then degT v = degT−ℓ v and so we are done. Otherwise, v = u and
so degT v = degT−ℓ v + 1, and so we are done since v = u is also the first entry of PrüferV (T ).

With this lemma in hand, we are ready to prove that PrüferV is a bijection and thus establish
Cayley’s formula.

Theorem 3. For an ordered set V with |V | = n ≥ 2, PrüferV is a bijection from TV to V n−2.

Proof. We prove this by induction on n.
The base case of n = 2 is clear. If |V | = 2, then there is exactly one tree, and PrüferV maps

this one tree to the empty sequence, which is the only element of V 0.
Suppose now that n ≥ 3 and let V be any ordered set with |V | = n.
We show first that PrüferV is surjective. To this end, fix any sequence (s1, . . . , sn−2) ∈ V n−2.

Let v ∈ V be the smallest element with v /∈ {s1, . . . , sn−2}. Note that v exists since |V | = n (so there
are at least two elements not in {s1, . . . , sn−2}). In particular, (s2, . . . , sn−2) ∈ (V \ {v})n−3. By
the induction hypothesis, there is a tree T ′ ∈ TV \{v} with PrüferV \{v}(T

′) = (s2, . . . , sn−2). Form
the tree T on vertex set V by attaching v to the vertex s1. By construction, v is a leaf of T and v’s
unique neighbor is s1; thus we will have succeeded in showing that PrüferV (T ) = (s1, . . . , sn−2) if
we can show that v is the smallest leaf of T . Suppose that u is the smallest leaf of T and suppose
for the sake of contradiction that u ̸= v (and thus u < v). But then u is also a leaf of T − v. Thus,
by Lemma 2, we know that u never appears in PrüferV \{v}(T − v). Additionally, u ̸= s1 since s1
cannot be a leaf since n ≥ 3. Thus, u /∈ {s1, . . . , sn−2}; a contradiction to the definition of v.

We show now that PrüferV is injective. Suppose that T, S ∈ TV have

PrüferV (T ) = PrüferV (S) = (v1, . . . , vn−2);

we need to show that T = S. Suppose that t is the smallest leaf of T and that s is the smallest leaf
of S. Thus, the unique neighbor of t in T is v1 and the unique neighbor of s in S is v1. We claim
that t = s. Since (v1, . . . , vn−2) = PrüferV (T ), t does not appear in (v1, . . . , vn−2). Thus, t must
be a leaf of S. Since s is the smallest leaf of S, we must then have t ≥ s. A symmetric argument
implies that s ≥ t and so t = s as desired.

Now, that we know t = s, we have

PrüferV \{t}(T − t) = PrüferV \{t}(S − t) = (v2, . . . , vn−2).

The induction hypothesis then implies that T − t = S − t. Finally, since t = s is attached to v1 in
both T and in S, this implies that T = S as needed.

As we’ve seen, there is a simple way to build the Prüfer code of a tree (this is how we defined
the Prüfer code after all). Furthermore, given a sequence P ∈ V n−2, we can construct a tree on
vertex set V whose Prüfer code is P since PrüferV is bijective. But how would one efficiently build
this tree?

Consider a sequence P ∈ V n−2. Initialize F = (V,∅) and S = ∅ and iterate the following until
P becomes the empty sequence:

Let v ∈ V be the smallest element which does not appear in S nor in P . Suppose that the first
entry in P is p and add the edge vp to F . Remove the first entry of P (so we now have a sequence
of length one fewer) and add v to S. Repeat.



Once P is the empty sequence (which happens after n− 2 iterations), we will have |S| = n− 2.
Thus, V \ S = {u, v} for some u ̸= v. Adding the edge uv to F then yields our desired tree.

The proof that this algorithm works follows from unpacking the proof of surjectivity of PrüferV .
Let’s see a couple examples of this algorithm in practice with the two trees from earlier:

1. Example 1: P = (1, 1, 1, 1, 3) ∈ [7]5.
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2. Example 2: P = (2, 2, 3, 8, 4, 8) ∈ [8]6.
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P = (8), S = {1, 5, 2, 3, 6}
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