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These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-ds2.pdf

I encourage you to first read through all of these problems and then focus first on those with which you’re

less comfortable.

Problem 1. Show that every tree is bipartite.

Solution. Trees don’t have any cycles...

Problem 2. Show that if G has |E(G)| = |V (G)|+ k for some integer k ≥ −1, then G contains at
least k + 1 distinct cycles (though these cycles may overlap substantially).

Solution. Prove it by induction on k. The case of k = −1 is trivial (every graph has at least 0
cycles). For k ≥ 0, delete any edge e from G which lives in a cycle (why must one exist?); then
G− e has one fewer edge and all cycles in G which used the edge e no longer exist.

Problem 3 (Fulkerson–Hoffman–McAndrew conditions). Prove that if d1 ≥ · · · ≥ dn is graphical,
then

∑n
i=1 di is even and

k∑
i=1

di ≤ k(m− 1) +
n∑

i=m+1

min{di, k}, for every k,m ∈ [n] with k ≤ m.

Note that these conditions imply the Erdős–Gallai conditions (why?) and so this is actually a
biconditional statement.

Solution. Use the set
Ω =

{
(x, y) ∈ {v1, . . . , vk} × V : xy ∈ E

}
.

The LHS is |Ω| as is seen by summing over the first coordiante. For the RHS, partition Ω = Ω1⊔Ω2

where

Ω1 =
{
(x, y) ∈ {v1, . . . , vk} × {v1, . . . , vm} : xy ∈ E

}
,

Ω2 =
{
(x, y) ∈ {v1, . . . , vk} × {vm+1, . . . , vn} : xy ∈ E

}
,

and upper bound the size of each set.

Problem 4 (Bollobás conditions). Prove that if d1 ≥ · · · ≥ dn is graphical, then
∑n

i=1 di is even
and

k∑
i=1

di ≤
k∑

i=1

min{di, k − 1}+
n∑

i=k+1

min{di, k}, for every k ∈ [n].

Note that these conditions imply the Erdős–Gallai conditions (why?) and so this is actually a
biconditional statement.
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Solution. Use the set
Ω =

{
(x, y) ∈ {v1, . . . , vk} × V : xy ∈ E

}
.

The LHS is |Ω| as is seen by summing over the first coordinate. For the RHS, upper bound |Ω| by
summing over the second coordinate.

Problem 5 (Grünbaum conditions). Prove that if d1 ≥ · · · ≥ dn is graphical, then
∑n

i=1 di is even
and

k∑
i=1

max{di, k − 1} ≤ k(k − 1) +
n∑

i=k+1

min{di, k}, for every k ∈ [n].

Note that these conditions imply the Erdős–Gallai conditions (why?) and so this is actually a
biconditional statement.

Solution. Use the set

Ω =
{
(x, y) ∈ {v1, . . . , vk} × V : xy ∈ E ∨ y ∈ {v1, . . . , vk} \ {x}

}
.

For the LHS, notice that for any fixed x ∈ {v1, . . . , vk},{
y ∈ V : (x, y) ∈ Ω

}
⊇

(
{v1, . . . , vk} \ {x}

)
∪N(x),

which has size at least max{k−1, di}. The RHS is essentially the same as our proof of the necessity
of the Erdős–Gallai conditions done in class.

Problem 6 (Ryser conditions). A pair of sequences (a1, . . . , am), (b1, . . . , bn) is said to be bipartite-
graphical if there is a bipartite graph G with parts A = {v1, . . . , vm} and B = {u1, . . . , un} such
that deg vi = ai for all i ∈ [m] and deg ui = bi for all i ∈ [n].

Suppose that d1, . . . , dn is a graphical sequence. Show that if γ1, . . . , γn is any sequence such
that γi ∈ {di, di +1} for all i ∈ [n], then the pair of sequences (γ1, . . . , γn), (γ1, . . . , γn) is bipartite-
graphical.

Turns out that this is actually a biconditional statement if we include the condition that
∑n

i=1 di
is even. That is to say that if

∑n
i=1 di is even and the pair (γ1, . . . , γn), (γ1, . . . , γn) is bipartite-

graphical for all sequences γ1, . . . , γn with γi ∈ {di, di + 1} for all i, then d1, . . . , dn is graphical. (I
don’t expect you to prove this.)

Solution. Let A and B be two copies of the vertex-set of G (where G is a realization of d1, . . . , dn)
and connect vertices between the two parts that correspond to edges in G. Then add the edge
between the two copies of an individual vertex if γi = di + 1.

Problem 7. This problem will walk through another proof that trees on n vertices have n − 1
edges. Let T be a tree and fix any vertex u ∈ V (T ). For each non-negative integer i, set Ni = {v ∈
V (T ) : d(u, v) = i}. Note that N0 = {u} and that N1 is the neighborhood of u.

1. Show that V (T ) =
⊔

i≥0Ni.

2. Show that if xy ∈ E(T ), then there is some i ≥ 0 such that x ∈ Ni and y ∈ Ni+1 (or vice
versa).

3. Show that for each i ≥ 1 and any v ∈ Ni, v has exactly one neighbor in Ni−1.

4. Use these facts to prove that |E(T )| = |V (T )| − 1.



Solution.

1. T is connected so each vertex is at some non-negative, integer distance from u, and these sets
are disjoint since d(u, v) is a fixed number.

2. Show first that if x ∈ Ni and y ∈ Nj then |j − i| ≤ 1. Then show that it’s impossible that
i = j.

3. We know that there’s at least one neighbor there; why can’t there be two?

4. Use the bipartite handshaking lemma (HW2.5) to count the edges between Ni and Ni+1 for
all i ≥ 0. Then add them all up!

Problem 8. This problem shows that the main idea in problem 7 actually classifies all trees. Let G
be a graph and suppose that there is a partition V (G) = V0⊔· · ·⊔Vk with the following properties:

1. Vi is non-empty for all i ∈ {0, . . . , k}, and

2. G[V0] is a tree, and

3. Vi is an independent set for all i ∈ [k], and

4. For each i ∈ [k] and any v ∈ Vi, v has exactly one neighbor in
⋃i−1

j=0 Vj .

Show that G is a tree.

Solution. First, show by induction on i ∈ {0, . . . , k} that G[V0 ∪ · · · ∪ Vi] is a connected graph.
Then to show that G is acyclic, suppose there is a cycle C and look at the largest i for which
V (C) ∩ Vi ̸= ∅ — does this cause a problem?

Problem 9 (Bor̊uvka’s algorithm). Let G be a connected graph and let w : E(G) → R be a weight
function which assigns distinct weights (i.e. w(e) ̸= w(s) for any distinct e, s ∈ E(G)).

Initialize F = (V (G),∅) and iterate the following process:

1. If F is connected, terminate and return F .

2. If F is disconnected, suppose that F1, . . . , Fk are the connected components of F . For each
i ∈ [k], let ei be the minimum weight edge which has exactly one vertex in Fi (note: there
cannot be any ties since w assigns distinct weights). Replace F by F + e1 + · · · + ek and
repeat (note that it’s possible that some of the ei’s are the same — if this happens, we add
that edge in only once).

Prove that this algorithm returns a minimum weight spanning tree of G. (Note: The most
difficult part is arguing that the graph returned is acyclic.)

Extra fun: Why did we need to require that w assigned distinct weights? How could you modify
Bor̊uvka’s algorithm if this is not the case?

Extra extra fun: Show that Bor̊uvka’s algorithm terminates after at most ⌊log2|V (G)|⌋ itera-
tions.



Solution. The proof is pretty similar to Kruskal and Prim at its heart. However, there’s one
crucial difference. In Kruskal and Prim, we added only a single edge per iteration, which made it
easy to verify that the partial tree was acyclic at each step. However, here we are adding multiple
edges at a time (and these edges are chosen without any knowledge of one another)... What prevents
this from creating a cycle? The fact that w assigns distinct weights is crucial to this argument.

Once you know that Bor̊uvka actually returns a spanning tree, the argument that it’s a minimum
weight spanning tree is very similar to the argument used in Kruskal and Prim.

Problem 10 (Challenge question ). Show that if |E(G)| ≥ 2|V (G)|, then G contains a cycle of
length at most 2⌈log2|V (G)|⌉ − 1.

Solution. First show that we may suppose that G is connected. Then proceed by induction on
n = |V (G)| (base case of n = 5 makes sense here) and argue by contradiction.

Fix your favorite vertex u ∈ V (G) and for each non-negative integer i, set Ni = {v ∈ V (G) :
d(u, v) = i}. Set m = ⌈log2 n⌉ − 1 and prove that G[N0 ∪ · · · ∪Nm] is a tree.

Next consider any ℓ ∈ [m] and suppose that |Nℓ| ≤
∑ℓ−1

i=0 |Ni|. Setting A =
⋃ℓ−1

i=0 Ni, show that
A is incident to at most 2|A| − 1 many edges. Thus, we may remove the vertices in A from G to
form a new graph G′ which has n− |A| many vertices and at least 2|E(G)| − 2|A|+ 1 ≥ 2(n− |A|)
edges; so we may apply induction and win since |A| ≥ 1.

Therefore, we know that |Nℓ| ≥ 1 +
∑ℓ−1

i=0 |Ni| for every ℓ ∈ [m]. Prove by induction on ℓ that
this implies that |Nℓ| ≥ 2ℓ for each ℓ ∈ [m]. Set a = |

⋃m
ℓ=0Nℓ|; show that a ≥ 2m+1 − 1.

Now, set b = |
⋃

i≥m+1Ni|; note that n = a+ b. Argue that |E(G)| ≤ (a− 1) + ab+
(
b
2

)
and use

this to show that b ≥ 2.
Now the kicker:

n = a+ b ≥ (2m+1 − 1) + 2 = 2m+1 + 1 = 2⌈log2 n⌉ + 1 ≥ n+ 1;

contradiction!


