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These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-ds3.pdf

I encourage you to first read through all of these problems and then focus first on those with which you’re

less comfortable.

Problem 1. Prove that if ∆(G) ≤ 2, then κ(G) = λ(G).

Solution. Since κ(G) = λ(G) = 0 if G is disconnected, we may suppose throughout that G is
connected.

The cases when ∆(G) ∈ {0, 1} will be immediate (the only options are K1 and K2, respectively).
Prove that if ∆(G) = 2, then G is either a path or a cycle. Then argue that κ(G) = λ(G) for these
graphs.

Problem 2. Recall that κ(G) ≤ λ(G) ≤ δ(G) for any graph G. Convince yourself that these
inequalities can be strict. Furthermore, show that for any integers κ, λ, δ with 1 ≤ κ < λ < δ, there
is a graph G with κ(G) = κ, λ(G) = λ and δ(G) = δ.

Solution. There are many constructions, but here is just one.
Let U = {u1, . . . , uδ+1} and U ′ = {u′1, . . . , u′δ+1} and form a graph G with vertex-set U ⊔ U ′ as

follows:

• Include all edges among U and all edges among U ′, so G[U ] ∼= G[U ′] ∼= Kδ+1.

• For all i ∈ [λ− κ+ 1], include the edge u1u
′
i.

• For all i ∈ {2, . . . , κ}, include the edge uiu
′
i.

Show that κ(G) = κ, λ(G) = λ and δ(G) = δ for this G.

Problem 3. Let G be a graph and let A,B ⊆ V (G) be non-empty subsets (that could intersect).
An A-B path is a path (v0, . . . , vk) with v0 ∈ A, vk ∈ B and none of v1, . . . , vk−1 are in either A
or B (we used these paths in our proof of Menger’s theorem). Note that (x) is an A-B path if and
only if x ∈ A ∩B.

1. Use Menger’s theorem for vertex-connectivity to prove that if |A|, |B| ≥ κ(G), then there are
at least κ(G) many vertex-disjoint A-B paths in G.

N.b. This fact also follows immediately from Lemma 1 in the extra notes from 03-03; one just
needs to observe that κG(A,B) ≥ κ(G) in this case.

2. Use Menger’s theorem for edge-connectivity to prove that if |A|, |B| ≥ λ(G), then there are
at least λ(G) many edge-disjoint A-B paths in G such that each vertex in A ∪ B belongs to
at most one of these paths (i.e. no two start at nor end at the same point).

Solution. Augment G by adding two vertices a, b where a is adjacent to everything in A and b
is adjacent to everything in B; call this new graph G′. Show that any a-b path in G′ contains an
A-B path in G. Then show that κ(G′) ≥ κ(G) and λ(G′) ≥ λ(G). Finally, apply Menger’s theorem
(either vertex- or edge-version) to get the desired a-b paths in G′ and thus the desired A-B paths
in G.
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Problem 4. Suppose that a graph G has blocks B1, . . . , Bk and cut-vertices v1, . . . , vℓ. We build
a new graph B with V (B) = {b1, . . . , bk, c1, . . . , cℓ} and cibj ∈ E(B) if and only if vi ∈ V (Bj). Note
that B is a bipartite graph with parts {b1, . . . , bk} and {c1, . . . , cℓ}.

Prove that if G is a connected graph on at least two vertices, then B is a tree. Furthermore,
show that none of c1, . . . , cℓ are leaves of B. B is sometimes called the block tree of G.

Solution. Consider first the case that G has only a single block (i.e. k = 1).
Next, show that for each i ∈ [ℓ], ci is adjacent to at least two bj ’s (thus, once we show that B

is a tree, we will know that none of the ci’s are leaves).
In order to show that B is connected, it is enough to show that there is a walk between any pair

of bi’s (since each cj is connected to at least one of these). Do so by turning a path in G between
a vertex in Bi and a vertex in Bj into a walk in B between bi and bj .

In order to show that B is acyclic, proceed by contradiction. Take the shortest cycle in B and
show how this cycle implies the existence of a cycle in G which uses edges from different blocks,
thus reaching a contradiction.

Problem 5. The degeneracy of a graph G is defined to be

d(G) = max
{
δ(H) : H is a subgraph of G

}
.

1. Prove that d(G) ≤ 1 if and only if G is a forest.

2. Prove that d(G) is the smallest integer d such that there is an ordering V (G) = {v1, . . . , vn}
so that |N(vi) ∩ {v1, . . . , vi−1}| ≤ d for all i ∈ [n].

Such orderings will be our friend once we start talking about coloring graphs :)

3. Prove that if G is connected and d(G) = ∆(G), then G is regular.

The arboricity of a graph G, denoted by a(G), is defined to be the minimum integer k such
that we can partition the edges of G into k forests. If G has no edges, we set a(G) = 0.

4. Prove that d(G) ≥ a(G).

5. Prove that d(G) ≤ 2a(G)− 1.

Solution.

1. (⇐) Every subgraph of a forest is also a forest.

(⇒) Cycles have min-degree 2.

2. First find a labeling with d = d(G). Do so by induction on n, noting that if H is a subgraph
of G, then d(H) ≤ d(G). To accomplish the induction step, consider letting vn be any
smallest-degree vertex of G.

To finish the problem, we must show that it is impossible to have d < d(G). Fix an ordering
with |N(vi) ∩ {v1, . . . , vi−1}| ≤ d for all i ∈ [n]. To do so, for any subgraph H of G, consider
the smallest index i ∈ [n] such that H is a subgraph of G[{v1, . . . , vi}] and use this to show
that δ(H) ≤ d. Observe how this implies that d ≥ d(G).



3. Prove that if H is a proper subgraph of G (i.e. H ̸= G), then there is some v ∈ V (H) with
degH v < degG v. To accomplish this, consider separately the cases when H is spanning and
when H is not spanning (the connectivity of G will be essential for the latter case). Conclude
that δ(H) < ∆(G) for all proper subgraphs of G. Thus, if d(G) = ∆(G), then d(G) = δ(G)
and so G is regular.

4. Consider an ordering satisfying part 2 with d = d(G). Build a forest partition F1, . . . , Fd of
G by, for each i ∈ [n], distributing the ≤ d edges incident to vi in G[{v1, . . . , vi}] into the Fi’s
so that each one of these ≤ d edges gets assigned to a different Fi. By construction, the same
ordering implies that d(Fi) ≤ 1 and so it is a forest. Since we have covered each edge, these
forests show that a(G) ≤ d = d(G).

5. Observe that if H is a subgraph of G, then a(H) ≤ a(G). Now, prove that |E(G)| ≤
a(G) · (|V (G)| − 1) (how many edges does a forest have?). Then invoke the handshaking
lemma to find that δ(G) ≤ 2a(G)− 1.

Problem 6. Let G be a graph and let I be any collection of independent sets of G. For a vertex
v ∈ V (G), let Iv = {I ∈ I : v ∈ I} be the set of those independent sets in I which contain the
vertex v. Say that v ∈ V (G) is uncommon if |Iv| ≤ |I|/2 and otherwise say that v is common.

1. Prove that if G has at least one edge, then G has an uncommon vertex.

2. Prove that if G is not bipartite, then there is an edge uv ∈ E(G) such that both u and v are
uncommon.

3. Open question: Suppose that I is the set of all maximal independent sets of G. If G has at
least one edge, then there is some uv ∈ E(G) such that both u and v are uncommon.

Solution.

1. Prove that if uv ∈ E(G), then Iu and Iv are disjoint, which implies that at least one of u, v
is uncommon.

2. Let A be the set of uncommon vertices and let B be the set of common vertices. Certainly
V (G) = A ⊔B. The suggested proof of part 1 implies that B is an independent set. Since G
isn’t bipartite, A cannot be an independent set and so we get our desired edge.

3. No clue. However, part 2 implies that this is true if G is not bipartite.

Problem 7. If you read the supplementary notes on Dyck paths, we proved that there are at most
4n non-isomorphic trees on n vertices. This exercise will establish that there are at least αn many
non-isomorphic trees on n vertices for some α > 1.

1. Prove that there are at least nn−2/n! many non-isomorphic trees on n vertices.

2. Use the inequality 1 − x ≤ e−x (which can be proved via elementary calculus if you care to
do so) to prove that n! ≤ nn/e(n−1)/2.



3. Conclude that there are at least e(n−1)/2/n2 many non-isomorphic trees on n vertices, which
is approximately 1.6487n for large n.

N.b. With a more careful upper-bound on n! which can be found by approximating log n! by an
integral (see Stirling’s approximation), one can improve the lower-bound to approximately en ≈
2.7182n. As mentioned in the supplementary notes, the actual answer is approximately 2.9557n.

Solution.

1. Use Cayley’s formula and the fact that isomorphisms are bijections.

2. Write n! =
∏n−1

i=0 (n − i) = nn
∏n−1

i=0

(
1 − i

n

)
and apply the given inequality to each term in

the product.

3. Profit!

Problem 8. Fix an integer n ≥ 2 and let d1, . . . , dn be a sequence of positive integers with∑n
i=1 di = 2n − 2. Prove that the number of (labeled) trees T with vertex-set [n] and degT i = di

for all i ∈ [n] is precisely (
n− 2

d1 − 1, . . . , dn − 1

)
.1

Solution. How many Prüfer codes are there wherein each i appears exactly di − 1 times?

Problem 9. Let G be a connected graph and let w : E(G) → R be a weight function. Consider
the following “reverse-Kruskal algorithm”:

Initialize H = G and iterate the following process:

1. If H is acyclic, terminate and return H.

2. If H has a cycle, do the following. Let C ⊆ E(H) denote the set of all edges of H contained
within a cycle of H. Take any edge e ∈ C of maximum weight, replace H by H−e and repeat.

Prove that “reverse-Kruskal” returns a minimum spanning tree of G.

Solution. We know that the algorithm will eventually return a spanning tree of G since we only
ever deleted edges contained within cycles and G is connected.

The proof that we get a minimum spanning tree is very similar to our proof of Kruskal. Indeed,
take a minimum spanning tree T which shares the maximum number of edges with our tree. If T
is not our tree, then, at some point in our algorithm, we must have deleted an edge of T ; argue
that this is impossible based on the definition of T .

Problem 10. Let T1 ̸= T2 be two trees on the same vertex set. For any edge e ∈ E(T1) \ E(T2),
we know that T2 + e contains a unique cycle; call this cycle Ce. Prove that

E(T2) \ E(T1) ⊆
⋃

e∈E(T1)\E(T2)

E(Ce).

1For any non-negative integers k1, . . . , kℓ with
∑ℓ

i=1 ki = r,(
r

k1, . . . , kℓ

)
=

∣∣∣∣{(A1, . . . , Aℓ) ∈
(
2[r]
)ℓ

: [r] =

ℓ⊔
i=1

Ai and |Ai| = ki

}∣∣∣∣ = r!

k1! · · · kℓ!
.

If you haven’t seen multinomial coefficients before, convince yourself that
(

n
k,n−k

)
=
(
n
k

)
as a warm-up.



Solution. Suppose that the common vertex-set of T1 and T2 is V . Fix any s ∈ E(T2) \ E(T1);
then T2 − s is disconnected. So we can find a partition V = A ⊔ B such that both A and B are
non-empty and T2 − s has no edge crossing between A and B. In particular, since T2 is connected
the only edge of T2 which crosses between A and B is the edge s. Now, since T1 is connected, we
can find some e ∈ E(T1) which crosses between A and B; prove that e ∈ E(T1) \ E(T2) and that
s ∈ E(Ce).

Problem 11. Let G be a connected graph and let w : E(G) → R be a weight function. Let T
denote the set of all spanning trees of G and let Tmin denote the set of all minimum spanning trees
of G.

1. Fix any T1 ∈ Tmin and any T2 ∈ T with T1 ̸= T2. Prove that there is some e ∈ E(T2) \E(T1)
and some s ∈ E(T1) \E(T2) such T3 = T2 − e+ s is a spanning tree of G and w(T3) ≤ w(T2).

2. Let G be the graph with vertex-set T where T1T2 ∈ E(G) iff |E(T1)△ E(T2)| = 2.2 Fix any
T ∈ T and any T ′ ∈ Tmin. Prove that there is a path (T = T0, . . . , Tk = T ′) in G such that
w(Ti) ≤ w(Ti−1) for all i ∈ [k].

3. Prove that G is a connected graph.

4. Let Gmin be the subgraph of G induced by Tmin. Prove that Gmin is a connected graph.

Solution.

1. Since T1 ̸= T2, we can find some s ∈ E(T1) \ E(T2); let s be a minimum-weight edge in
E(T1) \ E(T2). Now T2 + s contains a unique cycle C which uses the edge s. Of course,
C must have some edge e with e ∈ E(T2) \ E(T1). Set T3 = T2 − e + s, so certainly T3

is a spanning tree of G. If w(e) ≥ w(s), then w(T3) ≤ w(T2) and so we are done. Else,
w(e) < w(s); but then consider T1 + e and reach a contradiction to the fact that T1 is a
minimum spanning tree of G.

2. Show that |T1 △ T2| = 2 if and only if there is some e ∈ E(T1) \ E(T2) and some s ∈
E(T2) \ E(T1) such that T2 = T1 − e+ s. Then use part 1.

3. Follows directly from part 2.

4. Follows directly from part 2.

Problem 12. Let G be a connected graph and let w : E(G) → R be a weight function. Let
f : R → R be a strictly increasing function (that is, x < y ⇐⇒ f(x) < f(y)) and consider a new
weight function w′ : E(G) → R defined by w′ = f ◦ w. Prove that T is a minimum spanning tree
with respect to w if and only if T is a minimum spanning tree with respect to w′.

Note: A näıve idea is to try to show that x1 + · · · + xk ≤ y1 + · · · + yk if and only if f(x1) +
· · · + f(xk) ≤ f(y1) + · · · + f(yk). But this is false; indeed, 1 + 4 < 3 + 3, yet 13 + 43 > 33 + 33

(note that x3 is a strictly increasing function). Instead use the key idea from Problem 11.

2Recall that A△ B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B); that is, A△ B is the set of elements which are in
either A or in B but not in both.



Solution. Of course, w(T −e+s) = w(T )−w(e)+w(s) and w′(T −e+s) = w′(T )−w′(e)+w′(s).
Thus, w(T − e + s) < w(T ) if and only if w(s) < w(e) and w′(T − e + s) < w′(T ) if and only if
w′(s) < w′(e). Now use Problem 11 and the fact that f is strictly increasing, so w(s) < w(e) ⇐⇒
w′(s) < w′(e).

Problem 13. Let G be a connected graph. A vertex c ∈ V (G) is called a center of G if d(c, u) ≤
⌈diam(G)/2⌉ for all u ∈ V (G) (understand why this definition is sensible).

1. Find an infinite collection of (non-isomorphic) connected graphs which have no center.

2. Prove that if T is a tree then T has a center. Furthermore, prove that:

(a) If diam(T ) is even, then T has a unique center.

(b) If diam(T ) is odd, then T has exactly two centers and these two centers form an edge
of T .

3. (Please do part 1 before this part) A graph G is called vertex-transitive if for any pair of
vertices u, v ∈ V (G), there is some automorphism f ∈ Aut(G) with f(u) = v. Prove that if
G is a connected, vertex-transitive graph which is not a clique, then G has no center.

N.b. If you know a bit of group theory, then you can construct a diverse collection of vertex-
transitive graphs known as Cayley graphs.

Solution.

1. There are many, but the easiest examples are the cycles Cn for each n ≥ 4. To see this,
note that diam(Cn) = ⌊n/2⌋ and that for all u ∈ V (Cn), there is some v ∈ V (G) for which
d(u, v) = diam(Cn).

2. Let T be a tree on at least two vertices; show that if d(u, v) = diam(T ), then both u and v
are leaves of T . Then let L be the set of leaves of T . Supposing that T has at least 3 vertices,
show that

(a) diam(T − L) = diam(T )− 2.

(b) u is a center of T if and only if u is a center of T − L.

Using these facts, prove the claim by induction on the diameter of T .

3. First, prove that if f ∈ Aut(G), then d(u, v) = d(f(u), f(v)) for all u, v ∈ V (G). Conclude
that if G is vertex-transitive, then for every u ∈ V (G), there is some v ∈ V (G) for which
d(u, v) = diam(G). Then observe that ⌈d/2⌉ = d if and only if d ∈ {0, 1}.

Problem 14. Let G be any disconnected, spanning subgraph of Kn and suppose that G1, . . . , Gk

are the connected components of G. Set Vi = V (Gi); note that k ≥ 2 since G is disconnected and
that we could have |Vi| = 1 for some (or all) i’s.

Let S denote the set of all (labeled) subgraphs H of Kn such that

• H is a connected, spanning subgraph of Kn, and

• G is a subgraph of H, and



• If C is a cycle of H, then C is actually a cycle of G (that is, H contains no additional cycles).

Prove that

|S| = nk−2
k∏

i=1

|Vi|.

Hint #1: Letting Tk denote the set of all (labeled) trees on vertex-set [k], consider the function
f : S → Tk defined by, for H ∈ S and i ̸= j ∈ [k], ij ∈ E(f(H)) if and only if H has an edge with
one vertex in Gi and the other in Gj . (You will need to show that f is well-defined, i.e. f(H) is
indeed a tree)

Hint #2: Problem 8 and the multinomial theorem will be helpful:( ℓ∑
i=1

xi

)r

=
∑

d1,...,dℓ∈Z≥0:
d1+···+dℓ=r

(
r

d1, . . . , dℓ

) ℓ∏
i=1

xdii .

Hint #2 (alternate): Alternatively, define a version of Prüfer codes that encapsulate this situ-
ation (hint #1 will still be helpful).

Solution. Prove first that f is well-defined; that is, f(H) is indeed a tree for all H ∈ S. Addi-
tionally, prove that if ij ∈ E(f(H)), then H has exactly one edge between Gi and Gj .

Now, fix any T ∈ Tk and prove that

|f−1(T )| =
k∏

i=1

|Vi|degT i.

Therefore,

|S| =
∑
T∈Tk

|f−1(T )| =
∑
T∈Tk

k∏
i=1

|Vi|degT i.

Grouping trees in Tk together based on the sequence (degT 1, degT 2, . . . ,degT k) and applying
Problem 8 then yields

|S| =
∑

d1,...,dk∈Z≥1:
d1+···+dk=2k−2

(
k − 2

d1 − 1, . . . , dk − 1

) k∏
i=1

|Vi|di

=

( ∑
d1,...,dk∈Z≥0:
d1+···+dk=k−2

(
k − 2

d1, . . . , dk

) k∏
i=1

|Vi|di
) k∏

i=1

|Vi|

=

( k∑
i=1

|Vi|
)k−2 k∏

i=1

|Vi| = nk−2
k∏

i=1

|Vi|.

For the alternate approach, we still need that f is well-defined and that if ij ∈ E(f(H)), then H
has exactly one edge between Gi and Gj . To define the necessary version of Prüfer codes, consider
deleting the smallest leaf ℓ from f(H). Assuming that the unique neighbor of ℓ is j in f(H), record
the two endpoints of the edge of H which connected Gℓ to Gj in two different lists. The first list



will contain the vertex from Gj and the second list will contain the vertex from Gℓ. Repeat until
f(H) has only a single edge left; then record the two vertices of G connected by this edge in the
second list. The kicker is that the second list contains exactly one vertex from each Vi and we
don’t need the order in order to reconstruct H (why?). Thus, this process will exhibit a bijection
between S and [n]k−2 × V1 × · · · × Vk (replicate the proof that Prüfer codes work in order to show
this).


