Discussion Session #5 Apr 21

MATH 314 Solutions

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-ds5.pdf

I encourage you to first read through all of these problems and then focus first on those with which you’re
less comfortable.

Probl(im 1. For each odd integer n > 1, construct a graph G on n vertices for which both x(G)

and x(G) are at least (n +1)/2.
This shows that the Nordhaus—-Gaddum inequalities (Problem 2) are tight.

Solution. Handle the case of n =1 first (only one thing you can do).

For n > 3, start with disjoint A, B where |A| = (n 4+ 1)/2 and |B| = (n — 1)/2. Form G by
placing a clique in A and not having any other edges. Then show that G also contains a clique on
at least (n + 1)/2 many vertices. O

Problem 2 (Nordhaus-Gaddum inequalities). Let G be a graph on n vertices. Prove that

(Technically, the second inequality implies the first, but I think it’s worth stating both of them)
The key idea behind both inequalities is to relate the degeneracy of G to that of G. In particular,
prove that d(G) < n — d(G) — 1 and then use the fact that x(H) < d(H) + 1 to derive the stated
inequalities.
Road map for showing that d(G) < n — d(G) — 1:

1. Let H be a subgraph of G with 6(H) = d(G) and let H' be a subgraph of G with §(H') = d(G).

2. Suppose for the sake of contradiction that d(G) > n—d(G) and argue that V(H)NV (H') = @.

3. Reach a contradiction by comparing |V (H)| and |V (H’)|.

Solution. For the road-map, the key observation is that if v € V(H )NV (H'), then deg,v > §(H)
and degg v > 6(H'), which is rendered impossible if §(H') > n — d(G) =n — 6(H).

To reach the contradiction in the last step of the road-map, note that |V(H)| > §(H) + 1 and
[V(H")| >d6(H') + 1.

Once you've shown that d(G) < n — d(G) — 1, then you have x(G) < d(G) + 1 and x(G) <
n —d(G). Thus, x(G) + x(G) < n + 1 is immediate. To show that x(G) - x(G) < (n + 1)?/4, you
need to note that (z + 1)(n — z) < (n + 1)?/4 for any x. The easiest way to show this is probably
the AM-GM inequality: ,/zy < (z +y)/2 (which can be proved by expanding (z — y)? > 0), but
you could also do some quick optimization via calc I yumminess if so desired. ]

Problem 3. Let D be a digraph with no loops. We define proper vertex-colorings of a digraph
to be the same as proper vertex-colorings of its underlying simple graph (so we just forget about
directions). In particular, x(D) is the same as x(G) where G is the underlying simple graph of D.

Let p(D) denote the number of vertices in a longest directed path in D (recall that (z) is always
a dipath which has 1 vertex).
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1. Suppose that D is acyclic (has no directed cycles, though the underlying simple graph could
have cycles). Prove that x(D) < p(D).

Hint: Let f(v) denote the number of vertices in a longest dipath which ends at v. Show that
f is a proper p(D)-coloring of D.

2. Show that part 1 still holds even if D contains dicycles.

Hint: Take a maximally acyclic subgraph of D and apply the hinted f to this subgraph.
Then show that every edge which was deleted when reducing to this subgraph is also properly
colored under f.

3. A tournament of order n is simply an orientation of K,. Show that every tournament contains
a Hamiltonian dipath (a dipath which contains all vertices).

4. Let T be a tournament of order n and consider coloring the edges of T' red and blue. Prove
that T contains a monochromatic (all edges the same color) dipath on at least y/n many
vertices.

Solution.

1. Assuggested, define f(v) to be the number of vertices in a longest dipath ending at v. Observe
that f(v) € [p(D)]. Given any edge (z,y) € E(D), show that f(y) > f(x) + 1 by slapping y
onto the end of a longest dipath ending at x. Here, it is very important that D is acyclic so
that we know that y didn’t appear earlier in such a dipath (why does the acyclicness imply
this?)

2. Letting H be a maximally acyclic digraph of D, we know that for any e € E(D)\ E(H), the
digraph H + e must contain a dicycle. So if e = (u,v), then such a dicycle must look like
(v=w1,v2,...,vp = u). If fis the coloring of H in the hint from part 1, then we would have

flor) < flug) <o < f(vk), s0 fu) # f(o).
Thus, f is also a proper coloring of D and so x(D) < p(H) < p(D).
3. x(K,) = n, so apply part 2.
4. HW11.2 + part 2.
O

Problem 4. Let G be a connected plane graph and suppose that every face of G has length either
5 or 6. If G is additionally 3-regular, show that G must have exactly 12 faces of length 5.
So it is no accident that soccer balls have exactly 12 pentagons on their surface!

Solution. Let P be the set of length-5 faces and let H be the set of length-6 faces, so |F| =
|P| + |H| by assumption. The headshaking lemma tells us that

2|E| = len(f) = 5|P| + 6|H|.
feF

Then, since G is 3-regular, the handshaking lemma tells us that

3[V| = degv =2|E| =5|P|+6|H|.
veV



Now, G is connected, so we may apply Euler’s formula to find that
1 1 1
2= |V|+ F| =[] = 5 (5IP| + 6|H]) + (1P| + [H]) — 5 (5|P| + 6]]) = 5Pl

O

Problem 5. Let G be a connected plane graph wherein every face is bounded by a cycle. Prove
that if G has no cycles of length 5 or shorter, then x(G) < 3.

10
Is there any bound on the cycle lengths (e.g. forbidding all cycles of length less than 1010™ )
that would imply that x(G) < 2?7

Solution. Use HW12.2 to show that d(G) < 2 and then apply our greedy coloring bound.

There is no such bound that would imply that x(G) < 2. Even if we forbid all cycles of length
< g, then, no matter how large g is, there will always be an odd integer k£ with k > g. Then C}, is
an odd cycle, which has chromatic number 3 and is also planar. O

Problem 6. Is there a graph G on exactly 6 vertices which is non-planar, yet does not contain a
copy of K5 nor K3 3?

Solution. Yup, just subdivide one edge of K5 once. This is, however, the only such graph. [

Problem 7. Let G be a graph. G contains vertices vy, ...,vs where degvy = 100, degwvs = 30,
degvs = 30, degvy = 4, degvs = 3 and all other vertices of G have degree either 1 or 2. Knowing
nothing else about G, can you determine whether or not G is planar?

Solution. What can you say about the degrees of G if it contained a subdivision of K5 or of
K337 Then reference Kuratowski. ]

Problem 8. The crossing number of G, denoted by cr(G) is the minimum number of pairs of edges
of G that must cross when attempting to draw G in the plane. In particular cr(G) = 0 iff G is
planar. Similarly cr(G) = 1 iff G is non-planar and there is a drawing of G in which exactly two of
the edges cross (since cr counts pairs of crossing edges).

1. Show that cr(Ks) = cr(K3z3) = 1.

2. Suppose that G is a graph with n > 3 vertices and m edges. Prove that cr(G) > m — 3n + 6.

(To make life easier, feel free to assume that Theorem 9 from 04-14 holds even if G is discon-
nected (it does still hold provided n > 3; we just didn’t prove it))

Solution.

1. It’s not too difficult to come up with such drawings. Try your best and you’ll probably
succeed.

2. Take a drawing of G with the minimum number of crossings, so it has exactly cr(G) many
pairs of crossing edges. Now, let G’ be the subgraph of G formed by deleting one edge per
crossing of G. By construction, G’ is planar (since we just created a planar drawing of it by
removing these misbehaving edges), has n vertices and m — cr(G) many edges. Since n > 3,
we know that m — cr(G) = |[E(G)]| <3n—-6 = cr(G) > m —3n+6.

O



