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These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-ds5.pdf

I encourage you to first read through all of these problems and then focus first on those with which you’re

less comfortable.

Problem 1. For each odd integer n ≥ 1, construct a graph G on n vertices for which both χ(G)
and χ(G) are at least (n+ 1)/2.

This shows that the Nordhaus–Gaddum inequalities (Problem 2) are tight.

Solution. Handle the case of n = 1 first (only one thing you can do).
For n ≥ 3, start with disjoint A,B where |A| = (n + 1)/2 and |B| = (n − 1)/2. Form G by

placing a clique in A and not having any other edges. Then show that G also contains a clique on
at least (n+ 1)/2 many vertices.

Problem 2 (Nordhaus–Gaddum inequalities). Let G be a graph on n vertices. Prove that

χ(G) · χ(G) ≤ (n+ 1)2

4
, and

χ(G) + χ(G) ≤ n+ 1.

(Technically, the second inequality implies the first, but I think it’s worth stating both of them)
The key idea behind both inequalities is to relate the degeneracy of G to that of G. In particular,

prove that d(G) ≤ n− d(G)− 1 and then use the fact that χ(H) ≤ d(H) + 1 to derive the stated
inequalities.

Road map for showing that d(G) ≤ n− d(G)− 1:

1. LetH be a subgraph of G with δ(H) = d(G) and letH ′ be a subgraph of G with δ(H ′) = d(G).

2. Suppose for the sake of contradiction that d(G) ≥ n−d(G) and argue that V (H)∩V (H ′) = ∅.

3. Reach a contradiction by comparing |V (H)| and |V (H ′)|.

Solution. For the road-map, the key observation is that if v ∈ V (H)∩V (H ′), then degG v ≥ δ(H)
and degG v ≥ δ(H ′), which is rendered impossible if δ(H ′) ≥ n− d(G) = n− δ(H).

To reach the contradiction in the last step of the road-map, note that |V (H)| ≥ δ(H) + 1 and
|V (H ′)| ≥ δ(H ′) + 1.

Once you’ve shown that d(G) ≤ n − d(G) − 1, then you have χ(G) ≤ d(G) + 1 and χ(G) ≤
n− d(G). Thus, χ(G) + χ(G) ≤ n+ 1 is immediate. To show that χ(G) · χ(G) ≤ (n+ 1)2/4, you
need to note that (x+ 1)(n− x) ≤ (n+ 1)2/4 for any x. The easiest way to show this is probably
the AM–GM inequality:

√
xy ≤ (x + y)/2 (which can be proved by expanding (x − y)2 ≥ 0), but

you could also do some quick optimization via calc I yumminess if so desired.

Problem 3. Let D be a digraph with no loops. We define proper vertex-colorings of a digraph
to be the same as proper vertex-colorings of its underlying simple graph (so we just forget about
directions). In particular, χ(D) is the same as χ(G) where G is the underlying simple graph of D.

Let p(D) denote the number of vertices in a longest directed path in D (recall that (x) is always
a dipath which has 1 vertex).
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1. Suppose that D is acyclic (has no directed cycles, though the underlying simple graph could
have cycles). Prove that χ(D) ≤ p(D).

Hint: Let f(v) denote the number of vertices in a longest dipath which ends at v. Show that
f is a proper p(D)-coloring of D.

2. Show that part 1 still holds even if D contains dicycles.

Hint: Take a maximally acyclic subgraph of D and apply the hinted f to this subgraph.
Then show that every edge which was deleted when reducing to this subgraph is also properly
colored under f .

3. A tournament of order n is simply an orientation ofKn. Show that every tournament contains
a Hamiltonian dipath (a dipath which contains all vertices).

4. Let T be a tournament of order n and consider coloring the edges of T red and blue. Prove
that T contains a monochromatic (all edges the same color) dipath on at least

√
n many

vertices.

Solution.

1. As suggested, define f(v) to be the number of vertices in a longest dipath ending at v. Observe
that f(v) ∈ [p(D)]. Given any edge (x, y) ∈ E(D), show that f(y) ≥ f(x) + 1 by slapping y
onto the end of a longest dipath ending at x. Here, it is very important that D is acyclic so
that we know that y didn’t appear earlier in such a dipath (why does the acyclicness imply
this?)

2. Letting H be a maximally acyclic digraph of D, we know that for any e ∈ E(D) \E(H), the
digraph H + e must contain a dicycle. So if e = (u, v), then such a dicycle must look like
(v = v1, v2, . . . , vk = u). If f is the coloring of H in the hint from part 1, then we would have
f(v1) < f(v2) < · · · < f(vk), so f(u) ̸= f(v).

Thus, f is also a proper coloring of D and so χ(D) ≤ p(H) ≤ p(D).

3. χ(Kn) = n, so apply part 2.

4. HW11.2 + part 2.

Problem 4. Let G be a connected plane graph and suppose that every face of G has length either
5 or 6. If G is additionally 3-regular, show that G must have exactly 12 faces of length 5.

So it is no accident that soccer balls have exactly 12 pentagons on their surface!

Solution. Let P be the set of length-5 faces and let H be the set of length-6 faces, so |F | =
|P |+ |H| by assumption. The headshaking lemma tells us that

2|E| =
∑
f∈F

len(f) = 5|P |+ 6|H|.

Then, since G is 3-regular, the handshaking lemma tells us that

3|V | =
∑
v∈V

deg v = 2|E| = 5|P |+ 6|H|.



Now, G is connected, so we may apply Euler’s formula to find that

2 = |V |+ |F | − |E| = 1

3

(
5|P |+ 6|H|

)
+
(
|P |+ |H|

)
− 1

2

(
5|P |+ 6|H|

)
=

1

6
|P |.

Problem 5. Let G be a connected plane graph wherein every face is bounded by a cycle. Prove
that if G has no cycles of length 5 or shorter, then χ(G) ≤ 3.

Is there any bound on the cycle lengths (e.g. forbidding all cycles of length less than 1010
1010

)
that would imply that χ(G) ≤ 2?

Solution. Use HW12.2 to show that d(G) ≤ 2 and then apply our greedy coloring bound.

There is no such bound that would imply that χ(G) ≤ 2. Even if we forbid all cycles of length
≤ g, then, no matter how large g is, there will always be an odd integer k with k > g. Then Ck is
an odd cycle, which has chromatic number 3 and is also planar.

Problem 6. Is there a graph G on exactly 6 vertices which is non-planar, yet does not contain a
copy of K5 nor K3,3?

Solution. Yup, just subdivide one edge of K5 once. This is, however, the only such graph.

Problem 7. Let G be a graph. G contains vertices v1, . . . , v5 where deg v1 = 100, deg v2 = 30,
deg v3 = 30, deg v4 = 4, deg v5 = 3 and all other vertices of G have degree either 1 or 2. Knowing
nothing else about G, can you determine whether or not G is planar?

Solution. What can you say about the degrees of G if it contained a subdivision of K5 or of
K3,3? Then reference Kuratowski.

Problem 8. The crossing number of G, denoted by cr(G) is the minimum number of pairs of edges
of G that must cross when attempting to draw G in the plane. In particular cr(G) = 0 iff G is
planar. Similarly cr(G) = 1 iff G is non-planar and there is a drawing of G in which exactly two of
the edges cross (since cr counts pairs of crossing edges).

1. Show that cr(K5) = cr(K3,3) = 1.

2. Suppose that G is a graph with n ≥ 3 vertices and m edges. Prove that cr(G) ≥ m− 3n+ 6.

(To make life easier, feel free to assume that Theorem 9 from 04-14 holds even if G is discon-
nected (it does still hold provided n ≥ 3; we just didn’t prove it))

Solution.

1. It’s not too difficult to come up with such drawings. Try your best and you’ll probably
succeed.

2. Take a drawing of G with the minimum number of crossings, so it has exactly cr(G) many
pairs of crossing edges. Now, let G′ be the subgraph of G formed by deleting one edge per
crossing of G. By construction, G′ is planar (since we just created a planar drawing of it by
removing these misbehaving edges), has n vertices and m− cr(G) many edges. Since n ≥ 3,
we know that m− cr(G) = |E(G)| ≤ 3n− 6 =⇒ cr(G) ≥ m− 3n+ 6.


