Discussion Session #6

MATH 314 Solutions

May 5

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-ds6.pdf

I encourage you to first read through all of these problems and then focus first on those with which you’re
less comfortable.

Problem 1. Let n be any positive integer. Set N = 2n if n is odd and set NV = 2n — 1 if n is even.
Show that every red,blue-coloring of E(K ) contains a monochromatic copy of K .

Solution. Letting deg, v and deg, v be the red- and blue-degrees of the vertex v in a coloring,
you just need to show that there’s some vertex for which either deg,v > n or deg,v > n. If n
is odd (and so N = 2n), then this is immediate from the fact that deg, v + degyv = 2n — 1. If
n is even (and so N = 2n — 1), then deg, v + deg, v = 2n — 2, so the only way this can fail is if
deg, v = degy v = n — 1 for all vertices v. But both n —1 and N are odd, so this is impossible (odd
number of odd degrees!). O

Problem 2. Show that if G is 3-connected, then any pair of vertices u # v € V(G) are contained
together within an even cycle.

Solution. Menger tells us that there are three internally disjoint u-v paths. Combining any two
of these paths yields a cycle containing u and v. Now, since we have three of these paths, some
pair have lengths of the same parity, so we get an even cycle by combining those. O

Problem 3. Let G be a bipartite graph with parts A, B which has at least one edge and set
D = {v e V(G) : degv = A(G)}. Prove that G contains a matching which saturates AN D.
(Note: if AN D = @, then the “empty matching” suffices)

Solution. If AND = @ then we are done. Otherwise, consider the subgraph G’ induced on AND
and B. Then, in G', every vertex in AN D has degree exactly A(G) (since we kept all of their
neighbors) and every vertex in B has degree at most A(G). Since A(G) > 1 (since G has an edge),
the claim then follows by applying Corollary 4 from 03-31 to G’. O

Problem 4. For an integer N > 2, let K denote the graph formed by deleting exactly one edge
from Ky (it really doesn’t matter which edge since they’re all identical).

Fix any integer n > 2 and set N = R(n,n). By definition, every red,blue-coloring of E(Ky)
contains a monochromatic copy of K,. However, prove that there exists some red,blue-coloring
of E(K ) which does not contain a monochromatic copy of K. In other words, show that every
single edge of Ky is important when it comes to forcing a monochromatic copy of K,,.!

Solution. By definition, we can find a red,blue-coloring of F(Kx_1) which does not contain a
monochromatic K,. Lift this to a coloring of E(K ) by “duplicating” a vertex. This works since a
clique cannot use both the original and duplicated vertex since there’s no edge between them! [

Problem 5. Recall that the 3-color Ramsey number R(m,n, p) is the smallest integer N such that
every 3-coloring of F(K ) (say with colors red,blue,green) contains either a red K,,, a blue K, or
a green K.

R IN.b. If you study more Ramsey theory in the future, you may come across the so-called “size-Ramsey numbers”
R(H), which is the fewest number of edges in a graph G such that any 2-coloring of F(G) has a monochromatic copy
of the graph H. This problem essentially proves that R(K,) = (R(’;’m).


https://mathematicaster.org/teaching/graphs2022/sol-ds6.pdf

1. Show that if m,n,p > 2, then

R(manvp) < R(m_ 17nap) +R(m7n_ 17p) +R(m’nap_ 1) -1

2. Show that if m,n,p > 1, then

R(m,n,p) < R(m, R(n,p)).

Can you see how either inequality proves that R(m,n,p) actually exists for all m,n,p? Can you
see how to generalize both inequalities to the “t-color Ramsey number”?

Solution.

1. Run the exact same argument from class that showed that R(m,n) < R(m—1,n)+R(m,n—1)
except with three colors.

2. Make yourself color-blind for a moment and pretend you can’t distinguish blue and green.
O
Problem 6. Let C(n) denote the set of all red,blue-colorings of E(K,,). Show that

1
average #{monoy triangles in f} = — (n)
fecn) 4\3

Conclude that there is some red,blue-coloring of E(K,) in which strictly fewer than 1/4 of all
triangles are monochromatic.
This shows that the theorem we proved in class is (approximately) tight.

Solution. Run almost exactly the same proof we did in class by exploiting indicator functions
and switching the order of summation. You’ll then be left with determining the number of ways to
color E(K,,) so that some fixed triangle is monochromatic. Once you figure that out, the equality
just pops out!

Now, not everyone can be above average, so certainly there’s a coloring with at most i(g) many
monochromatic triangles. Howewver, if there’s even one person that’s strictly above average, then
there also must be someone who’s strictly below average! And giving every edge the same color
yields a coloring which has strictly more monochromatic triangles than the average! ]

Problem 7.
1. Show that every red,blue-coloring of E(K,,) must contain a monochromatic tree on n vertices

2. Let T be any tree on t vertices, let n be a positive integer and set N =n +¢ — 1. Prove that
any red,blue-coloring of E(K ) contains either a red copy of T" or a blue copy of K ,. (This
generalizes part of Problem 1.)

3. Consider any n which is a multiple of 4. Construct a 3-coloring of E(K,) which does not

contain a monochromatic tree on strictly more than 5 many vertices.



Solution.
1. Either G or G is connected.

2. There is a blue K, if and only if deg, v > n for some vertex v. If this is not the case, then
degpv<n—1 = deg,v=N—-1—degyv=n+t—2—degy, >t—1. So the red-graph has
min degree at least ¢ — 1 and so it must contain a copy of 7.

3. Start with a proper 3-edge-coloring of K4 and “blow-up” each vertex into a cluster of n/4 many
vertices (color any edges within these chunks arbitrarily). Then any connected component of
any color-class sees at most two of these chunks, so any monochromatic tree sees at most two
of these chunks as well.

O]

Problem 8. Show that any ¢-coloring of E(K,,) contains a monochromatic tree on at least n/(t—1)
many vertices.
Roadmap:

1. Start by showing that if G is a bipartite graph with parts A, B, then G contains a tree on at
least (%I + \Tél) - |E| many vertices. In particular, show it contains a “double star” of this
size, where a double star is two stars whose centers are connected by an edge.

(a) Use Cauchy—Schwarz® and the bipartite handshaking lemma to show that
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(b) Why does this give you the desired double star?

2. Now consider a t-coloring of E(K,). If the color-t-graph is connected, then we win. Otherwise,
the color-t-graph has a break; apply part 1 to this break in some way.

Solution. For the first part of the roadmap, we employ Cauchy—Schwarz and the fact that G is
bipartite to bound
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Since not everyone can be below average, this means that there must be some edge zy € E where
x € A,y € B for which
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%in particular, the special case which stated: 1 a7 > 2 (300, ai)2



Taking all edges incident to x and to y then yields a double star (because G is bipartite) on
deg x + deg y many vertices.

For the second part, let GG1, ..., Gt be such that G; is the graph formed by the i-colored edges.
If G; is connected, then the coloring contains a spanning tree in color ¢, which is a monochromatic
tree on n > n/(t — 1) many vertices as needed. Otherwise, G; is disconnected, so we can find a
partition [n] = AU B with A, B # @ and Gy has no edges crossing between A and B. In particular,
every edge between A and B is colored with only the colors in [t — 1]. Thus, there is some color
i € [t — 1] which has at least |A| - |B|/(t — 1) many edges crossing between A and B. Applying the
first part of the roadmap to the bipartite graph formed by the color-i edges between A and B then
yields a color-¢ tree on at least
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many vertices as needed. O

Problem 9. In class, we showed that any sequence of n distinct real numbers contains a monotone
subsequence of length > %logQ n. Use DS5.3.4 to improve this bound to > y/n (which is actually
the correct answer).

Solution. Treat V(K,,) = [n]. Form a tournament 7" by orienting the edges of K, from smaller to
larger; that is (i,j) € E(T) <= i < j. Then color the edges of T' based on the relative ordering of
the elements of the sequence as we did in class. Finally, DS5.3.4 tells us that this coloring of E(T)
contains a monochromatic dipath of length > \/n; use this to conclude that there’s a monotone
subsequence of this length. O

Problem 10. You just got a new TV, but the remote didn’t come with any batteries and requires
two batteries to operate... Luckily, you have a box of 2n > 4 old batteries to fuel your new remote!
You remember that exactly n of these batteries are completely dead and exactly n of these batteries
have at least some charge. Unfortunately, they are scattered about and you can’t tell which is which
without testing them in your new remote. So, all you can do is insert two of these batteries into
your remote and see if it works. The remote will not work at all if even one of the inserted batteries
is dead. Determine (in terms of n) the fewest number of trials needed to make your remote work.
(To help you along, the correct answer is 6 if n =2 and is n+ 3 if n > 3.)

Solution. This is just a special case of Turdn’s theorem in disguise! Build a graph G where the
vertex-set is the set of the 2n batteries where we place an edge if we tested two batteries together.
Then we will be sure to succeed if and only if a(G) < n (or else it is possible that we did not
test any pair of working batteries and our remote never worked). So our question is: What is the
fewest number of edges in a 2n-vertex graph which has no independent set of size n? Flipping to
the complement: What is the maximum number of edges in a 2n-vertex graph which has no clique
of size n? The latter question is answered by Turdn’s theorem, so there you go!

If you actually want the optimal strategy, you should test batteries based on the non-edges of
Tn—1(2n) (Turdn’s theorem says that this is the only optimal strategy (up to isomorphism)). If
n =2, thenT,_1(2n) = K4 and if n > 3, then T;,_1(2n) consists of two triangles and a matching. [

Problem 11. Let T be any tree on ¢t > 2 vertices.

1. Prove that ex(n,T) > £(t — 2)n whenever (¢ — 1) | n.



2. Prove that ex(n,T) < (t — 2)n.

(Hint: Show that any graph G contains a subgraph H with 6(H) > |E(G)|/|V(G)|. To show
this, consider taking H to be a subgraph of G which maximizes the quantity |E(H)|/|V (H)|.)

N.b. A conjecture of Erdds and Sés from the 60’s posits that ex(n,T) &~ 3(t — 2)n where the “~”
is simply a rounding error if (t — 1) { n.
Solution.

1. Consider the disjoint union of n/(t — 1) many copies of K;_;.

2. First prove the hint. The main observation is that if H has at least two vertices and 6(H) <
|E(H)|/|V(H)|, then if v € V(H) has deg v = 6(H), then

[E(H —v)| _ [E(H)|=6H) _ |EH)| - [EE/|VH)] _ |E(H)|
V(H =v)]  [V(H)]-1 V(H)[ -1 V(H)|

With the hint out of the way, suppose that G is an n-vertex, T-free graph. If |E(G)| > (t—2)n,
then G contains a subgraph H with 6(H) > |E(G)|/|V(G)| >t—2 = §(H) >t —1. But
then H contains a copy of T since T has t vertices; a contradiction.

O]



