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These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-ds6.pdf

I encourage you to first read through all of these problems and then focus first on those with which you’re

less comfortable.

Problem 1. Let n be any positive integer. Set N = 2n if n is odd and set N = 2n− 1 if n is even.
Show that every red,blue-coloring of E(KN ) contains a monochromatic copy of K1,n.

Solution. Letting degr v and degb v be the red- and blue-degrees of the vertex v in a coloring,
you just need to show that there’s some vertex for which either degr v ≥ n or degb v ≥ n. If n
is odd (and so N = 2n), then this is immediate from the fact that degr v + degb v = 2n − 1. If
n is even (and so N = 2n − 1), then degr v + degb v = 2n − 2, so the only way this can fail is if
degr v = degb v = n− 1 for all vertices v. But both n− 1 and N are odd, so this is impossible (odd
number of odd degrees!).

Problem 2. Show that if G is 3-connected, then any pair of vertices u ̸= v ∈ V (G) are contained
together within an even cycle.

Solution. Menger tells us that there are three internally disjoint u-v paths. Combining any two
of these paths yields a cycle containing u and v. Now, since we have three of these paths, some
pair have lengths of the same parity, so we get an even cycle by combining those.

Problem 3. Let G be a bipartite graph with parts A,B which has at least one edge and set
D = {v ∈ V (G) : deg v = ∆(G)}. Prove that G contains a matching which saturates A ∩D.

(Note: if A ∩D = ∅, then the “empty matching” suffices)

Solution. If A∩D = ∅ then we are done. Otherwise, consider the subgraph G′ induced on A∩D
and B. Then, in G′, every vertex in A ∩ D has degree exactly ∆(G) (since we kept all of their
neighbors) and every vertex in B has degree at most ∆(G). Since ∆(G) ≥ 1 (since G has an edge),
the claim then follows by applying Corollary 4 from 03-31 to G′.

Problem 4. For an integer N ≥ 2, let K−
N denote the graph formed by deleting exactly one edge

from KN (it really doesn’t matter which edge since they’re all identical).
Fix any integer n ≥ 2 and set N = R(n, n). By definition, every red,blue-coloring of E(KN )

contains a monochromatic copy of Kn. However, prove that there exists some red,blue-coloring
of E(K−

N ) which does not contain a monochromatic copy of Kn. In other words, show that every
single edge of KN is important when it comes to forcing a monochromatic copy of Kn.

1

Solution. By definition, we can find a red,blue-coloring of E(KN−1) which does not contain a
monochromatic Kn. Lift this to a coloring of E(K−

N ) by “duplicating” a vertex. This works since a
clique cannot use both the original and duplicated vertex since there’s no edge between them!

Problem 5. Recall that the 3-color Ramsey number R(m,n, p) is the smallest integer N such that
every 3-coloring of E(KN ) (say with colors red,blue,green) contains either a red Km, a blue Kn or
a green Kp.

1N.b. If you study more Ramsey theory in the future, you may come across the so-called “size-Ramsey numbers”
R̂(H), which is the fewest number of edges in a graph G such that any 2-coloring of E(G) has a monochromatic copy

of the graph H. This problem essentially proves that R̂(Kn) =
(
R(n,n)

2

)
.
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1. Show that if m,n, p ≥ 2, then

R(m,n, p) ≤ R(m− 1, n, p) +R(m,n− 1, p) +R(m,n, p− 1)− 1.

2. Show that if m,n, p ≥ 1, then

R(m,n, p) ≤ R
(
m,R(n, p)

)
.

Can you see how either inequality proves that R(m,n, p) actually exists for all m,n, p? Can you
see how to generalize both inequalities to the “t-color Ramsey number”?

Solution.

1. Run the exact same argument from class that showed that R(m,n) ≤ R(m−1, n)+R(m,n−1)
except with three colors.

2. Make yourself color-blind for a moment and pretend you can’t distinguish blue and green.

Problem 6. Let C(n) denote the set of all red,blue-colorings of E(Kn). Show that

average
f∈C(n)

#{monoχ triangles in f} =
1

4

(
n

3

)
.

Conclude that there is some red,blue-coloring of E(Kn) in which strictly fewer than 1/4 of all
triangles are monochromatic.

This shows that the theorem we proved in class is (approximately) tight.

Solution. Run almost exactly the same proof we did in class by exploiting indicator functions
and switching the order of summation. You’ll then be left with determining the number of ways to
color E(Kn) so that some fixed triangle is monochromatic. Once you figure that out, the equality
just pops out!

Now, not everyone can be above average, so certainly there’s a coloring with at most 1
4

(
n
3

)
many

monochromatic triangles. However, if there’s even one person that’s strictly above average, then
there also must be someone who’s strictly below average! And giving every edge the same color
yields a coloring which has strictly more monochromatic triangles than the average!

Problem 7.

1. Show that every red,blue-coloring of E(Kn) must contain a monochromatic tree on n vertices

2. Let T be any tree on t vertices, let n be a positive integer and set N = n+ t− 1. Prove that
any red,blue-coloring of E(KN ) contains either a red copy of T or a blue copy of K1,n. (This
generalizes part of Problem 1.)

3. Consider any n which is a multiple of 4. Construct a 3-coloring of E(Kn) which does not
contain a monochromatic tree on strictly more than n

2 many vertices.



Solution.

1. Either G or G is connected.

2. There is a blue K1,n if and only if degb v ≥ n for some vertex v. If this is not the case, then
degb v ≤ n− 1 =⇒ degr v = N − 1− degb v = n+ t− 2− degb ≥ t− 1. So the red-graph has
min degree at least t− 1 and so it must contain a copy of T .

3. Start with a proper 3-edge-coloring ofK4 and “blow-up” each vertex into a cluster of n/4 many
vertices (color any edges within these chunks arbitrarily). Then any connected component of
any color-class sees at most two of these chunks, so any monochromatic tree sees at most two
of these chunks as well.

Problem 8. Show that any t-coloring of E(Kn) contains a monochromatic tree on at least n/(t−1)
many vertices.

Roadmap:

1. Start by showing that if G is a bipartite graph with parts A,B, then G contains a tree on at
least

(
1
|A| +

1
|B|

)
· |E| many vertices. In particular, show it contains a “double star” of this

size, where a double star is two stars whose centers are connected by an edge.

(a) Use Cauchy–Schwarz2 and the bipartite handshaking lemma to show that∑
a∈A,b∈B:

ab∈E

(deg a+ deg b) ≥
(

1

|A|
+

1

|B|

)
· |E|2.

(b) Why does this give you the desired double star?

2. Now consider a t-coloring of E(Kn). If the color-t-graph is connected, then we win. Otherwise,
the color-t-graph has a break; apply part 1 to this break in some way.

Solution. For the first part of the roadmap, we employ Cauchy–Schwarz and the fact that G is
bipartite to bound∑

a∈A,b∈B:
ab∈E

(deg a+ deg b) =
∑

a∈A,b∈B:
ab∈E

deg a+
∑

a∈A,b∈B:
ab∈E

deg b =
∑
a∈A

deg2 a+
∑
b∈B

deg2 b

≥ 1

|A|

(∑
a∈A

deg a

)2

+
1

|B|

(∑
b∈B

deg b

)2

=

(
1

|A|
+

1

|B|

)
· |E|2.

Since not everyone can be below average, this means that there must be some edge xy ∈ E where
x ∈ A, y ∈ B for which

deg x+ deg y ≥ 1

|E|
∑

a∈A,b∈B:
ab∈E

(deg a+ deg b) ≥
(

1

|A|
+

1

|B|

)
· |E|.

2in particular, the special case which stated:
∑n

i=1 a
2
i ≥ 1

n

(∑n
i=1 ai

)2



Taking all edges incident to x and to y then yields a double star (because G is bipartite) on
deg x+ deg y many vertices.

For the second part, let G1, . . . , Gt be such that Gi is the graph formed by the i-colored edges.
If Gt is connected, then the coloring contains a spanning tree in color t, which is a monochromatic
tree on n ≥ n/(t − 1) many vertices as needed. Otherwise, Gt is disconnected, so we can find a
partition [n] = A⊔B with A,B ̸= ∅ and Gt has no edges crossing between A and B. In particular,
every edge between A and B is colored with only the colors in [t − 1]. Thus, there is some color
i ∈ [t− 1] which has at least |A| · |B|/(t− 1) many edges crossing between A and B. Applying the
first part of the roadmap to the bipartite graph formed by the color-i edges between A and B then
yields a color-i tree on at least(

1

|A|
+

1

|B|

)
· |A| · |B|

t− 1
=

|A|+ |B|
t− 1

=
n

t− 1

many vertices as needed.

Problem 9. In class, we showed that any sequence of n distinct real numbers contains a monotone
subsequence of length > 1

2 log2 n. Use DS5.3.4 to improve this bound to ≥
√
n (which is actually

the correct answer).

Solution. Treat V (Kn) = [n]. Form a tournament T by orienting the edges of Kn from smaller to
larger; that is (i, j) ∈ E(T ) ⇐⇒ i < j. Then color the edges of T based on the relative ordering of
the elements of the sequence as we did in class. Finally, DS5.3.4 tells us that this coloring of E(T )
contains a monochromatic dipath of length ≥

√
n; use this to conclude that there’s a monotone

subsequence of this length.

Problem 10. You just got a new TV, but the remote didn’t come with any batteries and requires
two batteries to operate... Luckily, you have a box of 2n ≥ 4 old batteries to fuel your new remote!
You remember that exactly n of these batteries are completely dead and exactly n of these batteries
have at least some charge. Unfortunately, they are scattered about and you can’t tell which is which
without testing them in your new remote. So, all you can do is insert two of these batteries into
your remote and see if it works. The remote will not work at all if even one of the inserted batteries
is dead. Determine (in terms of n) the fewest number of trials needed to make your remote work.

(To help you along, the correct answer is 6 if n = 2 and is n+ 3 if n ≥ 3.)

Solution. This is just a special case of Turán’s theorem in disguise! Build a graph G where the
vertex-set is the set of the 2n batteries where we place an edge if we tested two batteries together.
Then we will be sure to succeed if and only if α(G) < n (or else it is possible that we did not
test any pair of working batteries and our remote never worked). So our question is: What is the
fewest number of edges in a 2n-vertex graph which has no independent set of size n? Flipping to
the complement: What is the maximum number of edges in a 2n-vertex graph which has no clique
of size n? The latter question is answered by Turán’s theorem, so there you go!

If you actually want the optimal strategy, you should test batteries based on the non-edges of
Tn−1(2n) (Turán’s theorem says that this is the only optimal strategy (up to isomorphism)). If
n = 2, then Tn−1(2n) ∼= K4 and if n ≥ 3, then Tn−1(2n) consists of two triangles and a matching.

Problem 11. Let T be any tree on t ≥ 2 vertices.

1. Prove that ex(n, T ) ≥ 1
2(t− 2)n whenever (t− 1) | n.



2. Prove that ex(n, T ) ≤ (t− 2)n.

(Hint: Show that any graph G contains a subgraph H with δ(H) ≥ |E(G)|/|V (G)|. To show
this, consider taking H to be a subgraph of G which maximizes the quantity |E(H)|/|V (H)|.)

N.b. A conjecture of Erdős and Sós from the 60’s posits that ex(n, T ) ≈ 1
2(t− 2)n where the “≈”

is simply a rounding error if (t− 1) ∤ n.

Solution.

1. Consider the disjoint union of n/(t− 1) many copies of Kt−1.

2. First prove the hint. The main observation is that if H has at least two vertices and δ(H) <
|E(H)|/|V (H)|, then if v ∈ V (H) has degH v = δ(H), then

|E(H − v)|
|V (H − v)|

=
|E(H)| − δ(H)

|V (H)| − 1
>

|E(H)| − |E(H)|/|V (H)|
|V (H)| − 1

=
|E(H)|
|V (H)|

.

With the hint out of the way, suppose that G is an n-vertex, T -free graph. If |E(G)| > (t−2)n,
then G contains a subgraph H with δ(H) ≥ |E(G)|/|V (G)| > t− 2 =⇒ δ(H) ≥ t− 1. But
then H contains a copy of T since T has t vertices; a contradiction.


