
MATH 314 HW #10 Solutions Apr 12

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw10.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

Problem 1 (2pts). Let G be a graph on n ≥ 2 vertices with δ(G) ≥ n/2. Show that:

1. If n is even, then G has a perfect matching.

2. If n is odd, then G− v has a perfect matching for every v ∈ V (G).

Solution. Consider first the case of n = 2; since δ(G) ≥ 1 here, we know that G ∼= K2, which
has a perfect matching.

Now consider n ≥ 3. Since δ(G) ≥ n/2, Dirac’s theorem tells us that G contains a Hamiltonian
cycle (v1, . . . , vn).

1. Suppose that n is even. Then the edges v1v2, v3v4, . . . , vn−1vn are vertex-disjoint and cover
all vertices of G. In other words, G has a perfect matching.

2. Suppose that n is odd and fix any v ∈ V (G). Since (v1, . . . , vn) forms a Hamiltonian
cycle of G, we may suppose, without loss of generality, that vn = v. Then the edges
v1v2, v3v4, . . . , vn−2vn−1 are vertex-disjoint and cover all vertices of G except for vn = v. In
other words, this is a perfect matching in G− v.

Problem 2 (2pts). Let G be a k-regular bipartite graph. Prove that we can partition the edges of
G into k perfect matchings. That is, show that we can can partition E(G) = M1 ⊔ · · · ⊔Mk where
each Mi is a perfect matching in G.

Solution. We prove the claim by induction on k.
As a base-case, consider k = 0. Then G has no edges and so E(G) = ∅ can trivially be

partitioned into k = 0 many perfect matchings.
Now suppose that k ≥ 1. Then we know that G contains a perfect matching; call one of the

Mk. Consider the graph G′ = G − Mk (deleting edges here). Since Mk is a perfect matching of
G, every vertex of G is incident to exactly one edge in Mk, so G′ is (k − 1)-regular. Thus, by the
induction hypothesis, we can partition E(G′) = M1 ⊔ · · · ⊔Mk−1 where M1, . . . ,Mk−1 are perfect
matchings in G′. Since G′ is a spanning subgraph of G, these are also perfect matchings in G.
Therefore, E(G) = E(G′) ⊔Mk = M1 ⊔ · · · ⊔Mk as desired.

Problem 3 (2pts). Let G be a bipartite graph with parts A,B. Prove that if∑
a∈A

1

deg a
≤ 1,

then G contains a matching which saturates A. Here, we employ the convention that 1
0 = +∞.

Hint: Recall the following two “tricks” used in class for a somewhat similar problem:

https://mathematicaster.org/teaching/graphs2022/sol-hw10.pdf


• Silly sizes: If X is a non-empty finite set, then |X| =
∑

x∈X 1 and 1 =
∑

x∈X
1

|X| .

• Switching the order of summation: Fix finite sets X,Y and suppose that Ω ⊆ X × Y . For
any function f : X × Y → R,∑

(x,y)∈Ω

f(x, y) =
∑
x∈X

∑
y∈Y :

(x,y)∈Ω

f(x, y) =
∑
y∈Y

∑
x∈X:

(x,y)∈Ω

f(x, y).

Solution. [#1] Since 1
0 = +∞ and

∑
a∈A

1
deg a ≤ 1, we may certainly suppose that deg a ≥ 1 for

all a ∈ A.
We verify Hall’s condition, so fix any non-empty S ⊆ A; we must show that |N(S)| ≥ |S|, which

then guarantees the desired matching. To do so, we imitate the main idea in our proof of Theorem
3 on 03-31.

|S| =
∑
a∈S

1 =
∑
a∈S

∑
b∈N(a)

1

deg a
=

∑
b∈N(S)

∑
a∈N(b)

1

deg a

≤
∑

b∈N(S)

∑
a∈A

1

deg a
≤

∑
b∈N(S)

1 = |N(S)|,

where the first inequality follows from the fact that N(b) ⊆ A for all b ∈ B and 1/ deg a ≥ 0 for all
a ∈ A and the second inequality follows from the assumption.

Solution. [#2] Since 1
0 = +∞ and

∑
a∈A

1
deg a ≤ 1, we may certainly suppose that deg a ≥ 1 for

all a ∈ A.
We verify Hall’s condition, so fix any non-empty S ⊆ A; we must show that |N(S)| ≥ |S|. Since

N(a) ⊆ N(S) for all a ∈ S, we know that deg a ≤ |N(S)| for all a ∈ S. Therefore,

1 ≥
∑
a∈A

1

deg a
≥

∑
a∈S

1

deg a
≥

∑
a∈S

1

|N(S)|
=

|S|
|N(S)|

=⇒ |N(S)| ≥ |S|.

Problem 4 (2pts). Fix any non-negative integers n, k such that k ≤ (n − 1)/2. Prove that there
exists an injection

f :

(
[n]

k

)
→

(
[n]

k + 1

)
with the property that X ⊆ f(X) for all X ∈

([n]
k

)
.

Note: you do not need to actually define the injection; it is enough to simply show that it exists.

Solution. Consider the bipartite graph G with parts A =
([n]
k

)
and B =

( [n]
k+1

)
where, for a ∈

A, b ∈ B, we have ab ∈ E(G) iff a ⊆ b. Observe that the desired injection exists if (and only if)
G has a matching which saturates A. Indeed, if G has such a matching M , then we can define
f(a) = b where ab ∈ M .

For any a ∈ A, we have deg a = n − |a| = n − k (we build a superset of a of size k + 1 by
appending any non-element of a). For any b ∈ B, we have deg b = |b| = k+1 (we build a subset of
b of size k by deleting any element of b).



Now, since k ≤ (n− 1)/2, we find that

n− k ≥ n− n− 1

2
=

n− 1

2
+ 1 ≥ k + 1.

In particular, deg a = n− k ≥ k + 1 for all a ∈ A and deg b ≤ k + 1 for all b ∈ B. Since k + 1 ≥ 1,
we may thus apply Corollary 4 from 03-31 to find that G has a matching which saturates A, which
yields the claim.

Problem 5 (2pts). Let G be a bipartite graph with parts A,B wherein no vertex of A is isolated.
Show that if all vertices in A have distinct degrees, then G contains a matching which saturates A.

Hint: If S ⊆ [n] is non-empty, how do |S| and maxS (the largest element in S) compare?

Solution. [#1] We verify Hall’s condition, so fix any non-empty S ⊆ A; we must show that
|N(S)| ≥ |S|. Set k = |S|. We claim that there is some a ∈ S with deg a ≥ k. Indeed, since
deg a ≥ 1 for all a ∈ A, if deg a ≤ k − 1 for all a ∈ S, then deg a ∈ [k − 1] for all a ∈ S. But then
there would be two vertices in S with the same degree since k − 1 < k = |S|; a contradiction.

Thus, since N(S) ⊇ N(a) for each a ∈ S, we have |N(S)| ≥ k = |S|, which concludes the
proof.

Solution. [#2] We start with a claim:

Claim 1. Let G be a bipartite graph with parts A,B. If we can label A = {a1, . . . , an} so that
deg ai ≥ i for all i ∈ [n], then G contains a matching which saturates A.

Proof. We prove the claim by induction on n. If n = 1, then A = {a1} and deg a1 ≥ 1, so there is
certainly a matching which saturates A.

Now suppose that n ≥ 2. Since deg a1 ≥ 1, there is some b1 ∈ B with a1b1 ∈ E(G). Now,
form the graph G′ by deleting a1 and b1, so G′ has parts A′ = A \ {a1} and B′ = B \ {b1}. Note
that degG′ a ≥ degG a − 1 for all a ∈ A′ since we deleted only one vertex from B. Thus, for all
i ∈ {2, . . . , n}, we have degG′ ai ≥ degG ai − 1 ≥ i− 1. So, we can label A′ = {a′1, . . . , a′n−1} where
a′i = ai+1 to have degG′ a′i ≥ i. The induction hypothesis allows us to find a matching M in G′

which saturates A′. Since neither a1 nor b1 exist in G′, we find that M ∪ {a1b1} is a matching in
G which saturates A.

Now for the problem at hand. Since no vertex of A is isolated and all vertices have distinct
degrees, we may label A = {a1, . . . , an} so that 1 ≤ deg a1 < deg a2 < · · · < deg an. Degrees are
integers and so this implies that deg ai ≥ i for all i ∈ [n]. Thus, G has a matching which saturates
A thanks to the above claim.

Problem 6 (1 bonus point). Fix positive integers m,n and let X be a set of size mn. Also, fix
any two partitions X = A1 ⊔ · · · ⊔An and X = B1 ⊔ · · · ⊔Bn where |Ai| = |Bi| = m for all i ∈ [n].
Prove that there exists a bijection π : [n] → [n] (i.e. a permutation on [n]) such that Ai ∩Bπ(i) ̸= ∅
for all i ∈ [n].

This problem will be graded all-or-nothing.
(Also, I won’t lie to you: notation gets really annoying here; as long as your notation is well

explained, you’ll be fine, even if your notation is somewhat ambiguous.)



Solution. We begin with a lemma.

Lemma 2. Fix any subset Y ⊆ X and set I = {i ∈ [n] : Bi ∩ Y ̸= ∅}. Then |I| ≥ |Y |/m.

Proof. We claim first that
⋃

i∈I Bi ⊇ Y . Indeed, fix any y ∈ Y . Since Y ⊆ X = B1 ⊔ · · · ⊔ Bn, we
know that y ∈ Bi for some i ∈ [n]. Furthermore, such an i must have i ∈ I since Y ∩ Bi ⊇ {y},
which is non-empty. Since y ∈ Y was arbitrary, we know that

⋃
i∈I Bi ⊇ Y . Now, since |Bi| = m

for each i, we have

|Y | ≤
∣∣∣∣⋃
i∈I

Bi

∣∣∣∣ ≤ 1
∑
i∈I

|Bi| = |I| ·m =⇒ |I| ≥ |Y |/m.

From here, we have an immediate corollary.

Corollary 3. Fix any non-empty J ⊆ [n] and set I =
{
i ∈ [n] : Bi∩

⋃
j∈J Aj ̸= ∅

}
. Then |I| ≥ |J |.

Proof. Since the Ai’s are pairwise disjoint, we have∣∣∣∣⋃
i∈J

Aj

∣∣∣∣ = ∑
j∈J

|Aj | = |J | ·m.

Thus, Lemma 2 implies that |I| ≥ (|J | ·m)/m = |J |.

We are now ready for the proof of the actual claim. Build a bipartite graph G with parts
A = [n] and B = [n] (note: we consider these to be two different copies of [n], so that A and B
are disjoint (notation is painful sometimes and I don’t want to force any category-theory nonsense
(co-products) on you to make this notationally apparent)) where ab ∈ E(G) (a ∈ A, b ∈ B) iff
Aa ∩ Bb ̸= ∅. Observe that the problem is equivalent to finding a perfect matching in the graph
G. Since |A| = n = |B|, it is enough to show that G has a matching which saturates A.

For any a ∈ A = [n], we have

N(a) =
{
b ∈ B : Bb ∩Aa ̸= ∅

}
.

Fix any non-empty J ⊆ A = [n]; we seek to show that |N(J)| ≥ |J |, which will verify Hall’s
condition and conclude the proof. Using what was just stated and the definition of the union, we
thus have

N(J) =
⋃
a∈J

{
b ∈ B : Bb ∩Aa ̸= ∅

}
=

{
b ∈ B : Bb ∩

⋃
a∈J

Aa ̸= ∅
}
.

Hence, Corollary 3 implies that |N(J)| ≥ |J | and so we have verified Hall’s condition, which
concludes the proof.

Problem 7 (2 bonus points). Sportsball is a game played between two teams that cannot end in
a tie, so one of these two teams wins the game and the other loses, no matter what. We have a
sportsball league with 2n teams for some integer n ≥ 1. Over a season of 2n− 1 days, every team
plays every other team at most once. Furthermore, each team plays at most one game per day.

We have 2n − 1 trophies to hand out, one for each day of the season. Reasonably, a trophy
for a particular day must go to one of the winning teams on that day. We seek to hand out as
many trophies as possible so that each team gets at most one trophy. We hand out the trophies at
the end of the season, so we can take into account the full results of the season before making our
decision.

1Really, this is an equality since the Bi’s are pairwise disjoint.



Let T be the set of all teams. For each team t ∈ T , let p(t) ⊆ T \ {t} denote the set of teams
that team t played over the course of the season. Prove that we can hand out at least

min
R⊊T

max
t∈T\R

|R ∪ p(t)|

of the trophies.2

This problem will be essentially graded all-or-nothing, except you can get one of the two
bonus points for proving the following special case:

If each team plays every other team exactly once over the course of the season (i.e. p(t) = T \{t}
for all t ∈ T ), then we can hand out all 2n− 1 trophies.

Solution. Let T denote the set of teams and let D denote the set of days, so |T | = 2n and
|D| = 2n− 1. We build a bipartite graph G with parts T and D where td ∈ E(G) (t ∈ T, d ∈ D) if
and only if t was one of the winning teams on day D. Handing out trophies in the desired fashion
corresponds to a matching in G, the number of trophies that we can hand out is exactly α′(G).

For just the one bonus point, we need to show that α′(G) = |D| = 2n−1 (i.e. G has a matching
which saturates D) assuming that each team plays every other team exactly once.

To show, this, we need to show that for any non-empty subset S ⊆ D, we have |N(S)| ≥ |S|.
Observe that N(S) is exactly the set of teams that won some game played on a day in S. In
particular, setting L = T \N(S), we see that L is the set of all teams that did not win any game
they played on any day in S (a priori, some teams may not have played any games on some/all
of these days, though it is possible (but not necessary here) to prove that this is not the case). If
|L| ≤ 1, then |N(S)| ≥ |T | − 1 = 2n − 1 = |D| ≥ |S| and we are done; thus we may suppose that
|L| ≥ 2.

Fix any team t ∈ L. For any other team s ∈ L \ {t}, by assumption, the teams t and s must
have played each other on some unique day ds ∈ D. Since sportsball cannot end in a tie, we
cannot have ds ∈ S and so ds ∈ D \ S. Furthermore, since t plays at most one game per day,
for any s, s′ ∈ L \ {t}, if ds = ds′ , then s = s′. In particular, the function s 7→ ds is an injection
from L \ {t} to D \ S and so |D \ S| ≥ |L \ {t}| = |L| − 1. Since |D \ S| = 2n − 1 − |S| and
|L| − 1 = |T \N(S)| − 1 = 2n− 1− |N(S)|, we have

2n− 1− |S| ≥ 2n− 1− |N(S)| =⇒ |N(S)| ≥ |S|,

which concludes the proof.

For both bonus points, we employ the extended form of Hall’s theorem:

α′(G) = 2n− 1−max
S⊆D

defect(S) = min
S⊆D

(
2n− 1− defect(S)

)
.

where defect(S) = max{0, |S| − |N(S)|}. We will prove that

2n− 1− defect(S) ≥ min
R⊊T

max
t∈T\R

|R ∪ p(t)|, (1)

2There are instances in which strictly more of the trophies can be handed out. For example, if at most one game
is played per day and each team plays exactly once, then we can hand out n trophies, yet the stated expression
evaluates to 1. I’d be interested to know if you can derive a better lower bound without taking into account the
actual results of any game. I’m more than happy to dish out even more bonus points for such a result, though send
any such argument to me separately from your homework.



for every S ⊆ D, which will yield the claim.

To begin, for any R ⊊ T and any t ∈ T \R, since we also have t /∈ p(t), we find that

|R ∪ p(t)| ≤ |T \ {t}| = 2n− 1;

so (1) holds if defect(S) = 0.
Thus, fix any S ⊆ D such that defect(S) ̸= 0; in particular defect(S) = |S| − |N(S)| ≥ 1.
Observe that N(S) is exactly the set of teams that won some game played on a day in S. Setting

L = T \N(S), we see that L is the set of all teams that either did not play any game on days in S
or lost every game they played on days in S. Since we are assuming that |S| − |N(S)| ≥ 1 here we
cannot have N(S) = T and so |L| ≥ 1.

Build a graph H with vertex-set L where xy ∈ E(H) if and only if teams x and y played each
other on some day in the season. Note that NH(x) = p(x)∩L for all x ∈ L. Furthermore, define the
function f : E(H) → D \S where f(xy) = d iff x and y played each other on day d. Observe that f
is well-defined since, if x and y play each other, then there is a unique day on which this happens
and also of these teams must win this game since there are no ties in sportsball (so f(xy) /∈ S).
Furthermore, for any fixed x ∈ L, we observe that f is injective on NH(x) since x plays at most
one game per day. Therefore, |p(x) ∩ L| = degH x ≤ |D \ S| = 2n− 1− |S| for every x ∈ L.

Recalling that L = T \N(S), fix any t ∈ L, so t /∈ N(S) and p(t) ∩ L = p(t) \N(S). Thus, we
have 2n− 1− |S| ≥ |p(t) \N(S)|. Since defect(S) = |S| − |N(S)| here, we then see that

2n− 1− defect(S) = 2n− 1− |S|+ |N(S)| ≥ |p(t) \N(S)|+ |N(S)| = |N(S) ∪ p(t)|,

for all t ∈ L = T \N(S). We know that N(S) ⊊ T (since L ̸= ∅), we can finally bound

2n− 1− defect(S) ≥ max
t∈T\N(S)

|N(S) ∪ p(t)| ≥ min
R⊊T

max
t∈T\R

|R ∪ p(t)|,

so S satisfies (1) which concludes the proof.


