
MATH 314 HW #11 Solutions Apr 19

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw11.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

Problem 1 (2pts). Let G be any graph. Prove that

|E(G)| ≥
(
χ(G)

2

)
.

Solution. [#1] Set t = χ(G) and let H be a t-critical subgraph of G. We know that δ(H) ≥ t−1,
which also implies that |V (H)| ≥ t. Applying the handshaking lemma to H, we thus bound

|E(G)| ≥ |E(H)| = 1

2

∑
v∈V (H)

degH v ≥ 1

2

∑
v∈V (H)

(t− 1) =
1

2
|V (H)|(t− 1) ≥ t(t− 1)

2
=

(
t

2

)
.

Solution. [#2] By definition, we can partition V (G) = A1 ⊔ · · · ⊔ Aχ(G) where each Ai is an
independent set. We claim that, for every i ̸= j ∈ [χ(G)], there is some edge between Ai and Aj .
Indeed, if there were no such edge, then Ai ∪Aj would also be an independent set of G. But then,
we could partition V (G) into χ(G)−1 independent sets by merging Ai and Aj ; hence contradicting
the definition of χ(G).

Thus, there is an edge between every pair of these independent sets, which yields at least
(
χ(G)
2

)
many edges of G since these sets are disjoint.

Problem 2 (1pt). Generalize Theorem 1 from 04-07:
Let G = (V,E) be any graph and consider coloring the edges of G red and blue (formally, we

have a function f : E → {red, blue}). Let Gr be the graph formed by the red edges and let Gb be
the graph formed by the blue edges (formally, Gr =

(
V, f−1(red)

)
and Gb =

(
V, f−1(blue)

)
). Prove

that
χ(Gr) · χ(Gb) ≥ χ(G).

Solution. Let fr : V → [χ(Gr)] be a proper coloring of Gr and let fb : V → [χ(Gb)] be a proper
coloring of Gb. Define the coloring

f : V → [χ(Gr)]× [χ(Gb)], where f(x) =
(
fr(x), fb(x)

)
,

which is a χ(Gr)χ(Gb)-coloring of G. We claim that f is a proper coloring of G, which will imply
the claim. Indeed, fix any edge xy ∈ E(G).

Case 1: xy is red, so xy ∈ E(Gr). Then fr(x) ̸= fr(y) since fr is a proper coloring of Gr. Thus,
f(x) ̸= f(y).

Case 2: xy is blue, so xy ∈ E(Gb). Then fb(x) ̸= fb(y) since fb is a proper coloring of Gb. Thus
f(x) ̸= f(y).

Problem 3 (1pt). For every pair of positive integers m,n, construct a graph G with the following
properties:

https://mathematicaster.org/teaching/graphs2022/sol-hw11.pdf


• G has m · n many vertices, and

• χ(G) = m, and

• χ(G) = n.

Solution. Set G = Kn, . . . , n︸ ︷︷ ︸
m

, which has mn many vertices. Certainly G is m-partite and so

χ(G) ≤ m. Furthermore, G contains a copy of Km (picking one vertex from each cluster) and so
χ(G) = m.

On the other hand, G is the disjoint union of m many copies of Kn. Since χ(Kn) = n, this tells
us that χ(G) = n.

Problem 4 (2pts). Prove that G is 3-critical if and only if G ∼= C2n+1 for some positive integer n.

Solution. (⇐) We already know that χ(C2n+1) = 3. Furthermore, if H is any proper subgraph
of C2n+1, then H cannot contain any cycle, let alone an odd one (since the only cycle in C2n+1 is
itself). Thus, H is bipartite and so χ(H) ≤ 2. We conclude that C2n+1 is 3-critical.

(⇒) Since χ(G) = 3, we know that G is not bipartite. Thus, G must contain a copy of C2n+1

for some positive integer n; let H denote such a subgraph which is isomorphic to C2n+1. If G ̸= H,
then H is a proper subgraph of G. But since H ∼= C2n+1, we have χ(H) = 3; contradicting the fact
that G is 3-critical. Thus, G = H ∼= C2n+1 as needed.

Problem 5 (2pts). Fix any integer k ≥ 1. Prove that if G is an n-vertex graph wherein

χ
(
G[N(v)]

)
≤ k, for every v ∈ V (G),

then χ(G) ≤
√
2kn.

(Hint: Take motivation from our proof that χ(G) ≤
√
2n if G is triangle-free. Be warned,

though, there are a couple steps which require more care.)
(Hint: If 0 ≤ x ≤ y, then x ≤ √

xy.)

Solution. We prove the claim by induction on n.
If n ≤ 2k, then χ(G) ≤ n ≤

√
2kn as needed. Thus, suppose that n ≥ 2k + 1.

If ∆(G) ≤
√
2kn− 1, then χ(G) ≤ ∆(G)+ 1 ≤

√
2kn and we are done, so we may suppose that

∆(G) >
√
2kn− 1. Fix any v ∈ V (G) with deg v = ∆(G) >

√
2kn− 1.

If V (G) = {v}⊔N(v), then we claim that χ(G) ≤ 1+k. Indeed, χ
(
G[N(v)]

)
≤ k by assumption

so we can find a k-coloring f : N(v) → [k] which is a proper coloring of G[N(v)]. Then we may
give v color k + 1 to form a proper (k + 1)-coloring of G, so χ(G) ≤ 1 + k. Now, since k ≥ 1 and
n ≥ 2k, we bound χ(G) ≤ 1 + k ≤ 2k ≤

√
2kn as needed.

Thus, suppose that V (G) ̸= {v} ⊔ N(v) and set H = G − ({v} ⊔ N(v)). We claim that
χ(G) ≤ k + χ(H).

Indeed, let A1, . . . , Aχ(H) be a partition of V (H) into χ(H) many independent sets in H;
χ(H) ≥ 1 since H has some vertices. Since H is an induced subgraph of G, each Ai is also an
independent set in G. Now, v has no neighbors in H, so A1 ∪{v} is also an independent set. Next,
χ(G[N(v)]) ≤ k and so we can partition N(v) into B1, . . . , Bk where each Bi is an independent
set. All together, A1 ∪ {v}, A2, . . . , Aχ(H), B1, . . . , Bk is a partition of V (G) into χ(H) + k many
independent sets and so χ(G) ≤ k + χ(H) as claimed.



Now, certainly H also satisfies the hypotheses of the theorem since chromatic numbers can only
decrease under taking subgraphs. Thus, since |V (H)| = n−deg v−1 < n, the induction hypothesis
tells us that

χ(H) ≤
√

2k(n− deg v − 1) <

√
2k(n−

√
2kn),

since deg v >
√
2kn− 1. Therefore, since n ≥ 2k,

χ(G) ≤ k + χ(H) < k +

√
2k(n−

√
2kn) < k +

√
2kn− 2k

√
2kn+ k2

= k +

√
(
√
2kn− k)2 =

√
2kn.

Problem 6 (2pts). For graphs G,H, the graph G is said to be H-free if G does not contain a copy
of H.

Fix any integer k ≥ 3. Prove that if G is a Ck-free graph on n vertices, then χ(G) ≤
√

2(k − 2)n.
(Hint: Problem 5)

Solution. Fix any v ∈ V (G), thanks to Problem 5, it suffices to prove that χ(G[N(v)]) ≤ k − 2.
Suppose for the sake of contradiction that χ(G[N(v)]) ≥ k − 1. Then, thanks to Theorem 2 from
04-12, we know that G[N(v)] contains a copy of every tree on k − 1 many vertices. In particular,
it contains a path on k− 1 ≥ 2 many vertices, label such a path (v1, . . . , vk−1) where vi ∈ N(v) for
all i ∈ [k− 1]. Since v is adjacent to all of the vi’s, it is, in particular, adjacent to v1 and vk−1. But
then, since v /∈ N(v), we find that (v1, . . . , vk−1, v) forms a cycle of length k in G; a contradiction
since G is assumed to be Ck-free.


