
MATH 314 HW #12 Solutions Apr 26

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw12.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

Problem 1 (2 + 2 + 2 pts).

1. Let G be a bipartite graph with parts A,B where |A| = |B| = n ≥ 1. Prove that if |E(G)| >
n(n− 1), then G has a perfect matching.

(It may be easier to rely on Kőnig here instead of on Hall, but it’s up to you. You could even
just induct on n.)

2. Let G be a bipartite graph with parts A,B and fix an integer n ≥ 1. Let A = A1 ⊔ · · · ⊔ An

and B = B1 ⊔ · · · ⊔Bn be any partitions (some of the Ai’s or Bj ’s may be empty). Note that
|A| and |B| have nothing to do with n; n is just the number of pieces in each partition.

Prove that if |E(G)| < n, then there is a bijection π : [n] → [n] such that G has no edges
between Ai and Bπ(i) for each i ∈ [n].

You are free to use part 1 as a black-box even if you haven’t proved it.

3. For each positive integer t, prove that if G is a t-critical graph, then λ(G) ≥ t− 1.

(Hint: Consult the notes from 03-01. Use part 2 to “merge independent sets”.)

You are free to use parts 1 and/or 2 as a black-box even if you haven’t proved then.

N.b. Vertex-connectivity is a very different story... In particular, the obvious analogue for
vertex-connectivity is false (in general). The “Moser spindle” is a counter-example when
t = 4, and there are many, many others.

Solution.

1. Via Kőnig:

First, since G is bipartite and each side has size n, we know that deg v ≤ n for each v ∈ V (G).

Let C ⊆ V (G) be a minimum vertex-cover of G, so |C| = β(G). Now, each vertex c ∈ C
covers deg c many edges of G, so, since C covers every edge of G, we must have

n(n− 1) < |E(G)| ≤
∑
c∈C

deg c ≤
∑
c∈C

n = n|C| =⇒ β(G) = |C| > n− 1.

Since β(G) and n − 1 are integers, this means that β(G) ≥ n. Thus, Kőnig tells us that
α′(G) = β(G) ≥ n and so G has a perfect matching.

Via Hall:

Since |A| = |B|, we just need to show that G has a matching which saturates A. Fix any
non-empty S ⊆ A; we must show that |N(S)| ≥ |S|. Set B′ = B \ N(S). By definition, G
has no edges between S and B′, and so

n(n− 1) < |E(G)| ≤ n2 − |S| · |B′| =⇒ |S| · |B′| < n =⇒ |S| · (n− |N(S)|) < n.

https://mathematicaster.org/teaching/graphs2022/sol-hw12.pdf


Of course, |S| · (n− |N(S)|) and n are both integers, so |S| · (n− |N(S)|) ≤ n− 1. If |S| = k,
then, since certainly k ≤ n, we have

n−|N(S)| ≤ n− 1

k
=⇒ |N(S)| ≥ n−n− 1

k
=

(k − 1)n+ 1

k
≥ (k − 1)k + 1

k
= k−1+

1

k
> k−1.

Again, |N(S)| and k − 1 are integers, so, in fact, |N(S)| ≥ k = |S| as needed.

Via induction:

If n = 1 then the claim is clear since |E(G)| > 0 =⇒ |E(G)| = 1, so this edge is a perfect
matching. Thus suppose that n ≥ 2.

We begin by claiming that there is some a ∈ A with deg a = n, so this a is adjacent to every
vertex in B. Indeed, if there is no such a ∈ A, then deg a ≤ n − 1 for all a ∈ A and so the
bipartite handshaking lemma tells us that

n(n− 1) < |E(G)| =
∑
a∈A

deg a ≤
∑
a∈A

(n− 1) = n(n− 1);

a contradiction.

Now we consider B.

Case 1: Every b ∈ B has deg b = n. Then G ∼= Kn,n which we know has a perfect matching.

Case 2: There is some b ∈ B with deg b ≤ n− 1.

Label A = {a1, . . . , an} and B = {b1, . . . , bn} so that deg an = n and deg bn ≤ n − 1. Note
that anbn ∈ E(G). Set A′ = {a1, . . . , an−1} and B′ = {b1, . . . , bn−1} and define G′ to be the
subgraph of G induced on A′⊔B′, so both parts of G′ have size n−1. Now, since anbn ∈ E(G),
we have

|E(G′)| = |E(G)| − (deg an + deg bn − 1) > n(n− 1)− (n+ (n− 1)− 1) = (n− 1)(n− 2).

Thus, the induction hypothesis tells us that G′ contains a perfect matching M . By definition,
neither an nor bn is an end-point of an edge in M , so, since anbn ∈ E(G), we find that
M ∪ {anbn} is a perfect matching in G.

2. Build a bipartite graph H with parts A = {A1, . . . , An} and B = {B1, . . . , Bn} where AiBj ∈
E(H) iff there are no edges of G between Ai and Bj . Then the desired bijection π exists if
and only if H contains a perfect matching.

Now, the Ai’s and Bj ’s are disjoint, so for each e ∈ E(G), the edge e connects exactly one
pair Ai and Bj . Some of these edges may connect the same Ai and Bj , but, in any case, there
are at most |E(G)| < n many non-edges in H between A and B. Thus,

|E(H)| > n2 − n = n(n− 1),

and so H has a perfect matching thanks to part 1.

3. λ(G) ≥ 0 always, and so we are done if t = 1; thus we may suppose that t ≥ 2. In this case,
G must have at least two vertices.

Suppose for the sake of contradiction that λ(G) ≤ t−2. Then we can partition V (G) = A⊔B
such that A,B are non-empty and |E[A,B]| ≤ t − 2. Since A and B are non-empty, both



G[A] and G[B] are proper subgraphs of G and so each has chromatic number at most t − 1
since G is t-critical. Thus, we may partition A = A1 ⊔ · · · ⊔At−1 and B = B1 ⊔ · · · ⊔Bt−1 so
that each Ai is an independent set in G[A] and each Bj is an independent set in G[B]. Since
G[A] and G[B] are induced subgraphs of G, we know that each Ai and each Bj is also an
independent set in G. Now, by considering the bipartite subgraph of G with parts A,B and
edges E[A,B], since |E[A,B]| ≤ t− 2 < t− 1, part 2 hands us a bijection π : [t− 1] → [t− 1]
such that there are no edges between Ai and Bπ(i). In particular, for each i ∈ [n], we know
that Ai ⊔Bπ(i) is an independent set in G. Thus, since π is a bijection, we can write

V (G) = A ⊔B =
(
A1 ⊔ · · · ⊔At−1

)
⊔
(
B1 ⊔ · · · ⊔Bt−1

)
=

t−1⊔
i=1

(
Ai ⊔Bπ(i)

)
,

which yields a partition of V (G) into t − 1 many independent sets. This, however, implies
that χ(G) ≤ t− 1, which contradicts the assumption that G is t-critical.

Problem 2 (2pts). Let g ≥ 2 be an integer and let G be a connected plane graph on n vertices
wherein every face is bounded by a cycle of G. Prove that if G has no cycles of length g or smaller,
then

|E(G)| ≤ g + 1

g − 1
(n− 2).

Solution. Since each face of G is bounded by a cycle and G has no cycles of length ≤ g, we must
have len(f) ≥ g + 1 for all f ∈ F (G). Thus, the headshaking lemma yields

2|E(G)| =
∑

f∈F (G)

len(f) ≥
∑

f∈F (G)

(g + 1) = (g + 1)|F (G)| =⇒ |F (G)| ≤ 2

g + 1
|E(G)|.

Now, G is connected and so Euler’s formula tells us that

2 = n+|F (G)|−|E(G)| ≤ n+
2

g + 1
|E(G)|−|E(G)| = n− g − 1

g + 1
|E(G)| =⇒ |E(G)| ≤ g + 1

g − 1
(n−2).

Problem 3 (2pts). Prove a special case of the 4-color theorem: If G is a planar, triangle-free
graph, then χ(G) ≤ 4.

Solution. [#1] Suppose for the sake of contradiction that χ(G) ≥ 5 and let H be any 5-critical
subgraph of G. Since H is a subgraph of G, H is also planar and triangle-free. Additionally, H is
connected and has δ(H) ≥ 4 (Props 4&6 from 04-12). Set n = |V (H)|; certainly n ≥ 5 ≥ 3 since
δ(H) ≥ 4.

We may therefore apply the handshaking lemma and Theorem 11 from 04-14 to bound

2n− 4 ≥ |E(H)| = 1

2

∑
v∈V (H)

degH v ≥ 1

2

∑
v∈V (H)

4 ≥ 4n

2
= 2n;

a contradiction.



Solution. [#2] Let G be a planar, triangle-free graph; we claim that δ(G) ≤ 3. If G has connected
components G1, . . . , Gk, then δ(G) = mini∈[k] δ(Gi), so it suffices to consider the case when G is
connected. Set n = |V (G)|. If n ≤ 2, then δ(G) ≤ 1, so we may suppose that n ≥ 3. So G is a
planar, triangle-free, connected graph with n ≥ 3, so we may apply the handhsaking lemma and
Theorem 11 from 04-14 to bound

2n− 4 ≥ |E(G)| = 1

2

∑
v∈V (G)

deg v ≥ 1

2

∑
v∈V (G)

δ(G) =
n

2
δ(G) =⇒ δ(G) ≤ 2

n
(2n− 4) = 4− 8

n
< 4.

Since δ(G) and 4 are integers, we conclude that δ(G) ≤ 3.

Now, if H is any subgraph of G, then H is also planar and triangle-free. Therefore,

d(G) = max{δ(H) : H is a subgraph of G} ≤ 3,

and so χ(G) ≤ d(G) + 1 ≤ 4 as needed.


