MATH 314 HW #12 Solutions Apr 26

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hwi2.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to
use the result from any problem on this (or previous) assignment as a part of your solution to a different
problem even if you have not solved the former problem.

Problem 1 (2 + 2 + 2 pts).
1. Let G be a bipartite graph with parts A, B where |A| = |B| =n > 1. Prove that if |[E(G)| >
n(n — 1), then G has a perfect matching.
(It may be easier to rely on Koénig here instead of on Hall, but it’s up to you. You could even

just induct on n.)

2. Let G be a bipartite graph with parts A, B and fix an integer n > 1. Let A= A; U---U A,
and B = B; U---U B, be any partitions (some of the A;’s or B;’s may be empty). Note that
|A| and |B| have nothing to do with n; n is just the number of pieces in each partition.

Prove that if |E(G)| < n, then there is a bijection 7: [n] — [n] such that G has no edges
between A; and By ;) for each i € [n].

You are free to use part 1 as a black-box even if you haven’t proved it.

3. For each positive integer ¢, prove that if G is a t-critical graph, then A\(G) >t — 1.
(Hint: Consult the notes from 03-01. Use part 2 to “merge independent sets”.)
You are free to use parts 1 and/or 2 as a black-box even if you haven’t proved then.

N.b. Vertex-connectivity is a very different story... In particular, the obvious analogue for
vertex-connectivity is false (in general). The “Moser spindle” is a counter-example when
t = 4, and there are many, many others.

Solution.
1. Via Konig:
First, since G is bipartite and each side has size n, we know that degv < n for each v € V(G).
Let C' C V(G) be a minimum vertex-cover of G, so |C| = B(G). Now, each vertex ¢ € C

covers deg c many edges of G, so, since C' covers every edge of G, we must have

n(n—1) <|BE(G) <) dege <> n=n|C| = B(G)=|C|>n—1.
ceC ceC

Since 5(G) and n — 1 are integers, this means that 5(G) > n. Thus, Koénig tells us that
o/(G) = B(G) > n and so G has a perfect matching.

Via Hall:

Since |A| = |B|, we just need to show that G has a matching which saturates A. Fix any
non-empty S C A; we must show that |[N(S)| > |S|. Set B = B\ N(S). By definition, G
has no edges between S and B’, and so

n(n—1) < |E(G)| <n?—|S|-|B'| = |S|-|B'| <n = |S| - (n—|N(S)|) <n.


https://mathematicaster.org/teaching/graphs2022/sol-hw12.pdf

Of course, |S|-(n—|N(S)|) and n are both integers, so |S|-(n—|N(5)|) <n—1. If |S| =k,
then, since certainly £ < n, we have

—1 —1 k—1 1 k—1Dk+1 1
L = NSz _ ! 137” > k)+ — k=143 > k-1

Again, [N(S)| and k — 1 are integers, so, in fact, |N(S)| > k = |S| as needed.

n—|N(S)| <

Via induction:

If n = 1 then the claim is clear since |[E(G)| > 0 = |E(G)| = 1, so this edge is a perfect
matching. Thus suppose that n > 2.

We begin by claiming that there is some a € A with dega = n, so this a is adjacent to every
vertex in B. Indeed, if there is no such a € A, then dega < n — 1 for all a € A and so the
bipartite handshaking lemma tells us that

n(n—1) < |B(G)| =) dega< ) (n—1)=n(n-1);

acA acA

a contradiction.

Now we consider B.

Case 1: Every b € B has degb = n. Then G = K, ,, which we know has a perfect matching.
Case 2: There is some b € B with degb <n — 1.

Label A = {ay,...,a,} and B = {b1,...,b,} so that dega, = n and degb, < n — 1. Note
that a,b, € E(G). Set A’ ={a1,...,ap—1} and B" = {by,...,b,—1} and define G’ to be the

subgraph of G induced on A’LIB’, so both parts of G’ have size n—1. Now, since a,b, € E(G),
we have

|E(G")| = |E(G)| - (degan + degby —1) > n(n—1) — (n+ (n—1) — 1) = (n — 1)(n — 2).

Thus, the induction hypothesis tells us that G’ contains a perfect matching M. By definition,
neither a, nor b, is an end-point of an edge in M, so, since a,b, € E(G), we find that
M U {apby,} is a perfect matching in G.

. Build a bipartite graph H with parts A = {A;,..., Ay} and B={Bj,..., B} where A;B; €
E(H) iff there are no edges of G between A; and B;j. Then the desired bijection 7 exists if
and only if H contains a perfect matching.

Now, the A;’s and B;’s are disjoint, so for each e € E(G), the edge e connects exactly one
pair A; and B;. Some of these edges may connect the same A; and B;, but, in any case, there
are at most |F(G)| < n many non-edges in H between A and B. Thus,

|E(H)| >n? —n=n(n-1),
and so H has a perfect matching thanks to part 1.

. MQG) > 0 always, and so we are done if ¢ = 1; thus we may suppose that ¢ > 2. In this case,
G must have at least two vertices.

< t—2. Then we can partition V(G) = AUB

Suppose for the sake of contradiction that A(G)
| <t—2. Since A and B are non-empty, both

such that A, B are non-empty and |E[A, B|



G[A] and G[B] are proper subgraphs of G and so each has chromatic number at most ¢t — 1
since G is t-critical. Thus, we may partition A = A U---UA; 1 and B=BiU---UB;_1 s0
that each A; is an independent set in G[A] and each Bj; is an independent set in G[B]. Since
G[A] and G[B] are induced subgraphs of G, we know that each A; and each B; is also an
independent set in G. Now, by considering the bipartite subgraph of G with parts A, B and
edges E[A, B], since |E[A, B]| <t—2 < t—1, part 2 hands us a bijection 7: [t — 1] — [t — 1]
such that there are no edges between A; and Br;). In particular, for each i € [n], we know
that A; U Br(;) is an independent set in G. Thus, since 7 is a bijection, we can write

t—1
V(G)=AUB=(AjU---UA_ 1)U (BiU---UB1) = | |(4iUByg),
i=1
which yields a partition of V(G) into ¢ — 1 many independent sets. This, however, implies
that x(G) <t — 1, which contradicts the assumption that G is t-critical.

O]

Problem 2 (2pts). Let g > 2 be an integer and let G' be a connected plane graph on n vertices
wherein every face is bounded by a cycle of G. Prove that if G has no cycles of length g or smaller,
then

g+1
E(Y <

(n—2).

Solution. Since each face of G is bounded by a cycle and G has no cycles of length < g, we must
have len(f) > g+ 1 for all f € F(G). Thus, the headshaking lemma yields

AB@) = Y len(f) 2 Y (9+1) = g+ DIFG)| = [F@)] £ —IBG).
fEF(Q) fEF(G) g

Now, G is connected and so Euler’s formula tells us that

2 = n+[F(G) - B(G)| < nt+— = |BG)|~|E(@)] = n— L IB@] = IB(E) < L n-2),

Problem 3 (2pts). Prove a special case of the 4-color theorem: If G is a planar, triangle-free
graph, then x(G) < 4.

Solution. [#1] Suppose for the sake of contradiction that x(G) > 5 and let H be any 5-critical
subgraph of GG. Since H is a subgraph of G, H is also planar and triangle-free. Additionally, H is
connected and has §(H) > 4 (Props 4&6 from 04-12). Set n = |V (H)|; certainly n > 5 > 3 since
S(H) > 4.

We may therefore apply the handshaking lemma and Theorem 11 from 04-14 to bound

on—4> |E(H Z degHv>f Yo o4

UEV(H veEV (H)

a contradiction. O



Solution. [#2] Let G be a planar, triangle-free graph; we claim that 6(G) < 3. If G has connected
components G, ..., Gy, then §(G) = mine) 6(G;), so it suffices to consider the case when G is
connected. Set n = |[V(G)|. If n < 2, then §(G) < 1, so we may suppose that n > 3. So G is a
planar, triangle-free, connected graph with n > 3, so we may apply the handhsaking lemma and
Theorem 11 from 04-14 to bound

2n —4 > |E(G Z degv>f Z (G (G) = 4(G) <
veV(G) vev

(2n—4):4—§<4.
n

3\1\3

Since 6(G) and 4 are integers, we conclude that §(G) < 3.
Now, if H is any subgraph of GG, then H is also planar and triangle-free. Therefore,

d(G) = max{d(H) : H is a subgraph of G} < 3,

and so x(G) < d(G) + 1 < 4 as needed. O



