MATH 314 HW #13 Solutions May 3

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw13.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to
use the result from any problem on this (or previous) assignment as a part of your solution to a different
problem even if you have not solved the former problem.

Problem 1 (2pts). The 3-color Ramsey number R(m,n,p) is the smallest integer N such that
every 3-coloring of E(K ) (say with colors red, blue and green) contains either a red copy of K,,,
a blue copy of K, or a green copy of K,,.

Prove that R(3,3,3) < 17.
N.b. It turns out that R(3,3,3) = 17, but I'm not asking you to prove the lower bound.

Solution. Fix any red,blue,green-coloring of E(K7) and fix any vertex v. Let R, B,G denote
the red, blue and green neighborhoods of v, respectively, so N(v) = RU B U G. In particular,
|R|+|B|+|G| = 16. If all three of these sets had size at most 5, then we would have |R|+|B|+|G| <
15; a contradiction. Thus, one of these neighborhoods must have size at least 6. Since we are looking
for the same structure in each color, without loss of generality, we may suppose that |R| > 6.
Now, consider restricting the coloring to (}22) If there is any edge xy € (}22) which is colored red,
then {v,x,y} would induce a red triangle and we would be done! Otherwise, every edge in (]2%) is
either blue or green. Then, since |R| > 6 = R(3,3), we know that this restricted coloring contains
either a blue triangle or a green triangle as needed. O

Problem 2 (2pts). Prove that R(3,n) < n? for every positive integer n.
(Hint: It’s probably best if you just think about G vs G instead of red,blue-colorings here.)
(Hint: Review the silly upper and lower bounds that we proved on chromatic numbers on
04-05.)

Solution. [#1] Let G be any n?-vertex graph; we must show that either G' contains a triangle or
that G contains a copy of K,, (i.e. a(G) > n)

Thus, suppose that G does not contain a triangle; we must show that a(G) > n.

To begin, fix any v € V(G). Since G is triangle-free, it must be the case that N(v) is an
independent set in G. Therefore, if degv = |[N(v)| > n, then a(G) > n and we are done. Since this
is true for every v € V(G), we may suppose that A(G) <n — 1.

However, in this case we can combine our silly bounds on x(G) to find that
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Solution. [#2] I was dumb and didn’t realize that an even stronger bound follows from the basic
bounds we derived in class... Oh well, free points for you!
Since n > 1, we have n + 1 < 2n, so

R(3,n) < <

n-.
3—-1

n+3—2> ~n(n+1) <2
=—— =<


https://mathematicaster.org/teaching/graphs2022/sol-hw13.pdf

Problem 3 (2pts). Consider coloring the numbers in [17] red and blue, i.e. we have a function
f:[17] — {red,blue}. Prove that there exist a # b € [17] such that f(a) = f(b) = f(a + b). (Note
that no integers outside of [17] receive any color, so it must be the case that also a + b € [17] in
order for this to happen.)

(Hint: Create a red,blue-coloring of E(K;g) (thinking of V(Kig) = [18]) based on the differences
between the points.)

(Hint: (x —y)+ (z—2)=2—y.)

You can receive 1.25pts/2 if you prove a simplified version of the claim where you
allow a = b. (such a proof could completely ignore the hint if you so choose and can also be
accomplished when 17 replaced by 5, but you don’t have to)

I’'m not schur if 17 is the smallest integer for which the claim is true. I'll hand out 1 bonus
point if you can determine (with proof) the smallest integer for which the claim is still true.

Solution. As suggested, for xy € F(Kig), set g(zy) = f(|x — y|). Since x # y € [18], we know
that |z —y| € [17] and so g is well-defined. Since g is a red,blue-coloring of F(Kg) and R(4,4) = 18,
we know that g admits a monochromatic copy of Ky since R(4,4) < 18; label the vertices of such
a monochromatic copy of Ky as ¢ <y < z < w.

Begin by setting a = y—x and b = z —y, so b+a = z —x. By definition f(a) = f(b) = f(a+b),
so if a # b, then we’re done. Thus, suppose that a = b, soy—x =2 —y.

Next, set a = y—x and b = w—y, so a+b = w—x. Again, by definition f(a) = f(b) = f(a+Db),
so if a # b, then we’re done. If, however, a = b, then, using what we learned in the previous
paragraph, we would have w —y=y—zr=2—y — w—y =2 —y — w = z; a contradiction
since we know that z < w.

For the simplified version of the claim, we don’t really need Ramsey at all' and can replace 17 by
5. Indeed, let f: [5] — {red, blue} be any red,blue-coloring. Suppose for the sake of contradiction
that there are no a,b € [5] with f(a) = f(b) = f(a + b). Since the colors are symmetric, we
may, without loss of generality, suppose that f(1) = red. Now, since we allow a = b, we find that
f(1) # f(2) since 1 +1 = 2 and so f(2) = blue. Also, 2+ 2 = 4, so f(2) # f(4) implying that
f(4) = red. Then, since 1 +4 =5 and f(1) = f(4) = red, so we must have f(5) = blue. Also,
since 1 +3 = 4 and f(1) = f(4) = red, we mus also have f(3) = blue. But then 2+ 3 =5 and
f(2) = f(3) = f(5) = blue; a contradiction. O

Problem 4 (2 + 2 pts). Let n be a positive integer and set N = 3n — 1.

1. Prove that every red,blue-coloring of E(Kp) contains a monochromatic matching with n
edges.?

(Hint: Show that there exists an incident red- and blue-edge unless every edge gets the same
color)

!Granted, you could probably brute-force your way through a proof of the full claim without relying in Ramsey
at all, but that sounds very, very painful.

2Fun fact (if you care). Suppose that the red,blue-coloring of E(Ky) was initially hidden from you and, one by
one, you're allowed to ask about the color of whichever edges you desire. How many edges do you have to ask about
in order to actually find a monochromatic matching with n edges? Of course, you can find the matching by asking
about about the color of all (]; ) edges thanks to this problem; however, you can do much, much better. It turns out
that you can actually get away with asking about only N — 1 of the edges! The general case (more than two colors)
is still open, though, if you care to think about it :) The relevant papers are https://arxiv.org/abs/1904.00246
and https://arxiv.org/abs/2010.04113.
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2. Construct a red,blue-coloring of E(Ky_;) which does not contain a monochromatic matching
with n edges.

(Hint: Break V(Kpy_1) into two pieces, one of size 2n — 1 and the other of size n — 1, and
color the edges based on how they intersect these two pieces)

Solution.

1. We prove the claim by induction on n.

If n =1, then N = 2. Of course any red,blue-coloring of F(K3) contains a monochromatic
matching with at least 1 edge since the only edge in existence gets a color!

Thus, suppose that n > 2 and fix any red,blue-coloring of F(Ky).

Since N > 2, we may suppose that the color red is used in the coloring (since we could switch
the colors otherwise given that the colors are symmetric here). If every edge is red, then there
is certainly a red matching with at least n edges since N =3n —1 > 2n.

Now, suppose there is at least one red edge and at least one blue edge; suppose that xy is
red and wv is blue. If {x,y} N {u,v} # &, then these edges are incident. Otherwise, consider
the edge yu. If yu is blue, then zy and yu are incident red and blue edges. Otherwise, yu is
red, so yu and wv are incident red and blue edges.

In either case, there is some vertex v which is incident to some red edge and to some blue
edge. Suppose that vx is red and vy is blue for some x,y. Set V' = V(Ky) \ {v,z,y}, so
[V/|=N-3=3n—-1-3=3(n—1)—1. Consider the restricting the coloring to (‘g/)
By the induction hypothesis, there exists a monochromatic matching with n — 1 edges which
lives within (‘;/); call one such matching M. If M is red, then M U {vz} is a red matching
with n edges. If M is blue, then M U {vy} is a blue matching with n edges.

2. Since N = 3n — 1, we can partition V(Kxn_1) = AU B where |[A| =2n—1 and |B| =n — 1.
Color every edge with both end-points in A red and color every other edge blue. We claim
that this coloring has no monochromatic matching with n edges.

Indeed, suppose for the sake of contradiction that M were a monochromatic matching with
n edges.

If M is red, then every end-point of an edge in M must reside in A. Since M is a matching,
all of these end-points are distinct and so we must have |A| > 2n, which is not the case.

If M is blue, then every edge in M must have at least one end-point in B (since otherwise
that edge would be red). But M has n many edges and these edges are vertex-disjoint, so
this would only be possible if |B| > n, which is not the case.
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