
MATH 314 HW #2 Solutions Feb 1

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw2.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

Problem 1 (1 pt). Recall that a directed graph (or digraph) is a pair D = (V,E) where V is a
set and E ⊆ V 2. For u, v ∈ V , a u-v diwalk in D is a sequence (u = v0, . . . , vk = v) such that
(vi, vi+1) ∈ E for all i ∈ {0, . . . , k − 1}.

Consider the relation R on V where uRv iff there is a u-v diwalk. Give an example of a digraph
D where R is not an equivalence relation. Justify your answer. (Feel free to draw a picture of D)

Solution. ConsiderD =
(
{1, 2}, {(1, 2)}

)
. Observe that 1R2 since (1, 2) is a 1-2 diwalk. However,

(2, 1) /∈ R since there is no 2-1 diwalk because (2, 1) /∈ E. Therefore R fails to be symmetric and
so cannot be an equivalence relation.

Problem 2 (2 pts). Let G be a connected graph and consider a function f : V (G) → X where X
is some arbitrary set. Prove that if f is not a constant function, then there is an edge uv ∈ E(G)
such that f(u) ̸= f(v).

Solution. [#1] Fix any x ∈ X which is in the image of f ; set A = {v ∈ V (G) : f(v) = x} and
B = {v ∈ V (G) : f(v) ̸= x}. Since f is not constant and x was chosen to be in the image of f , we
see that A,B are both non-empty and also that V (G) = A ⊔ B. Now, since G is connected, there
must be an edge ab ∈ E(G) with a ∈ A and b ∈ B. This edge has the property that f(a) = x ̸= f(b)
as needed.

Solution. [#2] Since f is not constant, there must be some u, v ∈ V (G) with f(u) ̸= f(v). Since
G is connected, there is a u-v path; call it (u = v0, v1, . . . , vk = v). Let i ∈ {0, . . . , k} be the largest
index for which f(vi) = f(u). Note that such an i exists since (trivially) f(v0) = f(u) and also
that i < k since f(vk) = f(v) ̸= f(u). Thus, by the definition of i, we know that vivi+1 ∈ E(G)
and f(vi) = f(u) ̸= f(vi+1) as needed.

Problem 3 (2 pts). Prove that every graph on at least two vertices has a pair of vertices with the
same degree.

Solution. Suppose that G has n vertices; thus for any v ∈ V (G), we have deg v ∈ {0, . . . , n− 1}.
Suppose for the sake of contradiction that no two vertices have the same degree; thus we may label
the vertices v0, . . . , vn−1 so that deg vi = i. Consider vn−1 which has degree n − 1. This means
that vn−1 is adjacent to every other vertex of G; in particular, v0vn−1 ∈ E(G) since n ≥ 2 by
assumption. However, deg v0 = 0 and so v0 has no neighbors; a contradiction.

Problem 4 (2 pts). Prove that if G is a graph with δ(G) ≥ 2, then G must contain a cycle.

Solution. Suppose that P = (v0, v1, . . . , vk) is any maximal path in G. Since δ(G) ≥ 2, we know
that deg v0 ≥ 2; we can thus find some u ∈ V (G) \ {v1} such that v0u ∈ E(G). We claim that
u ∈ V (P ). Indeed, if not, then (u, v0, v1, . . . , vk) is a path in G, which contradicts the maximality
of the path P . As such, u = vi for some i ∈ {2, . . . , k} (since u ̸= v1); therefore (v0, v1, . . . , vi)
forms a cycle in G.
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Problem 5 (3 pts). Let G be a graph and let A be an independent set of G. Prove that∑
v∈A

deg v ≤ |E(G)|

with equality if and only if G is bipartite with parts A and V (G) \A.
(Especially in this problem, be sure to carefully justify all steps in your argument)

Solution. [#1] To begin, we point out that, since A is already assumed to be an independent
set, G is bipartite with parts A and V (G) \A if and only if V (G) \A is an independent set.

Suppose that G = (V,E) and for v ∈ A define

Ev = {e ∈ E : v ∈ e},

i.e. all edges incident to v. Note that |Ev| = deg v.
We claim first that for any u ̸= v ∈ A, we must have Eu ∩Ev = ∅. Indeed, if e ∈ Eu ∩Ev, then

u ∈ e and v ∈ e; since u ̸= v this means that e = uv. However, A is an independent set and so this
is impossible.

Thus, set Ê =
⋃

v∈AEv. Since the Ev’s are pairwise disjoint and certainly Ê ⊆ E, we have

|E| ≥ |Ê| =
∑
v∈A

|Ev| =
∑
v∈A

deg v,

with equality if and only if E = Ê.
To finish the proof, We need to show that E = Ê if and only if V \ A is an independent set.

We already know that Ê ⊆ E, so fix any e ∈ E. Observe that e /∈ Ê if and only if e∩A = ∅ which
happens if and only if e ⊆ V \ A. In other words, e ∈ Ê for all e ∈ E if and only if V \ A is an
independent set; thus the claim follows.

Solution. [#2] To begin, we point out that, since A is already assumed to be an independent
set, G is bipartite with parts A and V (G) \A if and only if V (G) \A is an independent set.

Suppose that G = (V,E) and define the set

Ê = {(v, e) ∈ A× E : v ∈ e}.

We begin by noticing that

|Ê| =
∑
v∈A

|{e ∈ E : v ∈ e}| =
∑
v∈A

deg v. (1)

Now, fix any e ∈ E and consider Ae = {v ∈ A : v ∈ e}. Since A is an independent set, we know
that |Ae| ≤ 1 since if |Ae| = 2, then both end-points of e would live in A, contradicting the fact
that A is an independent set. As such, define

E0 = {e ∈ E : |Ae| = 0}, and E1 = {e ∈ E : |Ae| = 1}.

By the earlier remark, we know that E = E0 ⊔ E1. We then compute

|Ê| =
∑
e∈E

|Ae| =
∑
e∈E0

0 +
∑
e∈E1

1 = |E1| ≤ |E|, (2)



with equality if and only if E1 = E since we already know that E1 ⊆ E. Combining equations (1)
and (2) then yields ∑

v∈A
deg v ≤ |E|,

with equality if and only if E1 = E.
To finish the claim, we observe that E1 = E if and only if V \A is an independent set. Indeed,

observe that e /∈ E1 if and only if Ae = ∅, which means that e ⊆ V \A. In other words, e ∈ E1 for
all e ∈ E (and thus E1 = E) if and only if V \A is an independent set.

Solution. [#3] To begin, we point out that, since A is already assumed to be an independent
set, G is bipartite with parts A and V (G) \A if and only if V (G) \A is an independent set.

Suppose that G = (V,E) and define the set

Ê = {(a, b) ∈ A× V : ab ∈ E}.

We first prove that |Ê| ≤ |E| with equality if and only if V \ A is an independent set. To do
so, consider the function f : Ê → E defined by f(a, b) = {a, b}; note that f is well defined by the
definition of Ê. We claim that f is an injection. Indeed, suppose that f(a1, b1) = f(a2, b2), so
{a1, b1} = {a2, b2}. If a1 = a2, then b1 = b2 so (a1, b1) = (a2, b2) and we are done; thus suppose
that a1 ̸= a2. We then have a1 = b2 and b1 = a2; thus both (a1, b1) ∈ Ê and (b1, a1) ∈ Ê. But this
means that a1, b1 ∈ A and a1b1 ∈ E which contradicts the fact that A is an independent set.

Now that we know that f is an injection, we know that |Ê| = |E| if and only if f is a surjection.
Observe that f is a surjection if and only if for every {x, y} ∈ E, (x, y) ∈ Ê or (y, x) ∈ Ê, i.e. x ∈ A
or y ∈ A. In other words, f is a surjection if and only if V \A is an independent set.

Now to finish the proof. We compute

|E| ≥ |Ê| =
∑
v∈A

|{b ∈ V : vb ∈ E}| =
∑
v∈A

deg v

with equality if and only if V \A is an independent set.


