
MATH 314 HW #4 Solutions Feb 8

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw4.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

Problem 1 (2 pts). Let G and H be graphs. A graph homomorphism from G to H is a function
f : V (G) → V (H) such that {f(u), f(v)} ∈ E(H) whenever {u, v} ∈ E(G).1

Prove that a graph G is bipartite if and only if there is a graph homomorphism from G to K2.

Solution. Label V (K2) = {v1, v2}.
(⇒) Suppose that G is bipartite with parts A1 and A2 and consider the function f : V (G) →

V (K2) defined by

f(x) =

{
v1 if x ∈ A1,

v2 if x ∈ A2.

We claim that f is a graph homomorphism. Indeed, fix any edge xy ∈ E(G); we may suppose that
x ∈ A1 and y ∈ A2. Thus, f(x) = v1 and f(y) = v2 and so f(x)f(y) ∈ E(K2) as claimed.

(⇐) Suppose that f : V (G) → V (K2) is a graph homomorphism. Set A1 = f−1(v1) and
A2 = f−1(v2); we claim that A1, A2 is a bipartition of G. To begin, certainly V (G) = A1 ⊔ A2, so
we must show that A1, A2 are independent sets. Suppose for the sake of contradiction that there
is an edge uv ∈ E(G) with u, v ∈ Ai (for i ∈ [2]). But then f(u) = f(v) = vi and so vivi ∈ E(K2)
since f is a graph homomorphism, which is impossible.

Problem 2 (2 pts). A graph G is called self-complementary if G ∼= G. For example, P4 and C5

are self-complementary.
Prove that if G is a self-complementary graph on n vertices, then n is congruent to either 0 or

1 modulo 4.

Solution. If G ∼= G, then certainly |E(G)| = |E(G)|; thus

|E(G)| = |E(G)| =
(
n

2

)
− |E(G)| =⇒ |E(G)| = 1

2

(
n

2

)
=

n(n− 1)

4
.

Since |E(G)| is an integer, it must be the case that 4 | n(n − 1). Of course, one of n or n − 1 is
even and the other is odd, so the only way for this to happen is if 4 | n or if 4 | (n− 1) The former
means that n ≡ 0 (mod 4) and the latter means that n ≡ 1 (mod 4).

Problem 3 (2 pts). Prove that a graph G on n vertices with δ(G) ≥ 3 must contain a cycle of
length at most ⌊n/2⌋+ 1.

Solution. This proof is similar to that of HW2.4. Let P = (v1, . . . , vk) be a maximal path in G:
since P is a path, we must have k ≤ n. By the same logic used in HW2.4, since deg v1 ≥ 3, we can
find some i < j ∈ {3, . . . , k} such that v1vi, v1vj ∈ E(G) or else we could extend P to a longer path
(note that this implies that k ≥ 4).

1Note that a graph homomorphism does not need to be a bijection and that it could be the case that {f(u), f(v)} ∈
E(H) even though {u, v} /∈ E(G).
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Therefore, both C = (v1, . . . , vi) and C ′ = (v1, vi, vi+1, . . . , vj) form cycles in G. Notice that
the length of C is i and the length of C ′ is j − i+ 2. If i ≤ ⌊n/2⌋+ 1, then C is our desired cycle,
so suppose that i ≥ ⌊n/2⌋+ 2. But then C ′ has length

j − i+ 2 ≤ j + 2−
(⌊

n

2

⌋
+ 2

)
= j −

⌊
n

2

⌋
≤ n−

⌊
n

2

⌋
=

⌈
n

2

⌉
≤

⌊
n

2

⌋
+ 1,

and so C ′ is our desired cycle.

Problem 4 (2 pts). Let T be a tree on n vertices with ∆(T ) ≤ 2. Prove that T ∼= Pn.

Solution. [#1] Suppose that P = (v1, . . . , vk) is a maximum path in T . Set Vk = {v1, . . . , vk}
for ease of notation. We begin by claiming that T [Vk] ∼= Pk. Indeed, the only way for this to fail
is if there were some i < j ∈ [k] with j − i ≥ 2 with vivj ∈ E(T ). But if this were the case, then
(vi, vi+1, . . . , vj) would form a cycle in T , contradicting the fact that T is acyclic.

With this in hand, the claim will follow if we can show that k = n, so suppose for the sake
of contradiction that k < n. In this case both Vk and V (T ) \ Vk are both nonempty sets and
they partition V (T ), so, since T is connected, there must be an edge xy ∈ E(T ) with x ∈ Vk and
y ∈ V (T ) \ Vk. We consider three cases (though two are basically the same case):

Case 1: x ∈ {v2, . . . , vk−1}. Suppose that x = vj ; then vj−1, vj+1, y ∈ N(vj) and so deg vj ≥ 3
since these are three distinct vertices; this contradicts the fact that ∆(T ) = 2.

Case 2: x = v1. Here we see that (y, x = v1, . . . , vk) is a strictly longer path than P ; contradic-
tion.

Case 3: x = vk. Here we see that (v1, . . . , vk = x, y) is a strictly longer path than P ; contradic-
tion.

Solution. [#2] We prove the claim by induction on n.
If n = 1, then the claim is obvious since the only trees on one vertex are isomorphic to P1. (In

fact, the same is true for n ∈ {2, 3}, but we don’t need these to establish the base case).
Now suppose that n ≥ 2. Since T is a tree on at least two vertices, it has a leaf, call it x.

Also, let y be the unique neighbor of x in T . Now consider the tree T ′ = T − x. Certainly
∆(T ′) ≤ ∆(T ) ≤ 2, and so the induction hypothesis implies that T ′ ∼= Pn−1. We may therefore
label V (T ′) = {v1, . . . , vn−1} such that E(T ′) = {vivi+1 : i ∈ [n − 2]}. Now, y ∈ V (T ′) and so
y = vi for some i ∈ [n− 1].

Suppose first that i ∈ {2, . . . , n − 2}. In this case, we see that vi−1, vi+1, x ∈ NT (y) which
means that degT y ≥ 3 since these are distinct vertices; a contradiction to the fact that ∆(T ) ≤ 2.
Therefore, i ∈ {1, n − 1}. If i = 1, then T is the path (x, v1, . . . , vn−1) and if i = n − 1, then T is
the path (v1, . . . , vn−1, x) since the only neighbor of x in T is y = vi. In either case, we see that
T ∼= Pn which concludes the proof.

Problem 5 (2 pts). Determine (with proof) all trees T (up to isomorphism) on n ≥ 2 vertices
such that T is also a tree. (Note: we do not require that T ∼= T .)

Solution. [#1] Since both T and T have n vertices and both are trees, they each have n − 1
edges. Thus,

n− 1 = |E(T )| =
(
n

2

)
− |E(T )| =

(
n

2

)
− (n− 1) =⇒ 2(n− 1) =

n(n− 1)

2
=⇒ n = 4,



where the last implication follows since n ≥ 2. Since |V (T )| = 4, we know that Delta(T ) ≤ 3, so
we consider two cases:

Case 1: ∆(T ) = 3. Since T has 4 vertices, and 3 edges, this means that every edge is incident
to that vertex of T with degree 3. This determines T ∼= K1,3. However, K1,3

∼= K3 ⊔K1, which is
not a tree.

Case 2: ∆(T ) ≤ 2. Problem 4 then implies that T ∼= P4, and we can check that P4 is self-
complementary and thus T is a tree as well!

We conclude that, up to isomorphism, the only tree T on at least two vertices with the property
that T is also a tree is P4.

Solution. [#2] To begin, we notice that if A ⊆ V (T ) is an independent set of T , then A induces
a clique in T . Since cliques of size at least three have cycles, this implies that |A| ≤ 2 since T is a
tree. From here, we can see that ∆(T ) ≤ 2. Indeed, for any v ∈ V (T ), we know that N(v) is an
independent set (or else T has a 3-cycle), and so deg v = |N(v)| ≤ 2. Problem 4 then implies that
T ∼= Pn for some n ≥ 2. We handle the various cases in turn.

Case 1: n = 2. Here, we see that T ∼= K2 which is not a tree.
Case 2: n = 3. Here, we see that T ∼= K1 ⊔K2 which is not a tree.
Case 3: n = 4. P 4

∼= P4 so this works!
Case 4: n ≥ 5. Label V (T ) = {v1, . . . , vn} so that E(T ) = {vivi+1 : i ∈ [n − 1]}, which we

can do since T ∼= Pn. Now observe that {v1, v3, v5} is an independent set of T of size three, which
contradicts our earlier observation.

We conclude that, up to isomorphism, the only tree T on at least two vertices with the property
that T is also a tree is P4.


