MATH 314 HW #5 Solutions Feb 8

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw5.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to
use the result from any problem on this (or previous) assignment as a part of your solution to a different
problem even if you have not solved the former problem.

Problem 1 (0.5 + 0.5 + 1 pts). For a fixed integer k > 3, a graph G is said to have property C
if every subgraph of GG with at least k edges contains a cycle. For a fixed integer k > 4, a graph G
is said to have property & if every subgraph of G with at least k edges contains an even cycle.

1. For each k > 3, construct a graph G which has property Cy and has |E(G)| = (g)
2. For each k > 4, construct a graph G which has property &, and has |E(G)| = [k/2]|k/2].

3. Prove that if G is a connected graph with property Cg, then |E(G)| < (g)

Solution.

1. Consider G = K}, which has |E(G)| = (’;) and |V(G)| = k. If H is any subgraph of G with
at least k edges, then |E(H)| > k = |V(G)| > |V(H)|; thus H must contain a cycle.

2. Consider G = K7y /91, |x/2) Which has [E(G)| = [k/2]|k/2] and [V(G)| = k. If H is any
subgraph of G with at least k edges, then |E(H)| > k = |V(G)| > |V(H)|; thus H must
contain a cycle. Now, H is a subgraph of G, which is bipartite, and so H is also bipartite.
Therefore, this cycle contained in H must be of even length.

3. Suppose that G has n vertices. Then since G is connected, it contains a spanning tree T,
which has n — 1 edges. Since T has no cycles and G has property Cr, we must have n —1 < k,
and so n < k. Therefore, |E(G)| < (5) < (g) as desired.

N.b. Part 3 remains true even if G is disconnected (this is not too difficult to show, but it does
require a sneaky idea). Additionally, Part 2 is tight; that is, if G is any graph with property &,
then |E(G)| < [k/2]|k/2] (this isn’t an easy result). If you're curious about either of these, take a
look at Theorem 3.8, Theorem 1.2 and Lemma 3.10 in the paper https://arxiv.org/abs/1711.
02082. O

Problem 2 (3 pts). This problem expands on the observation that trees on at least two vertices
have at least two leaves.

Let T be a tree on at least two vertices. Let ¢(T) denote the number of leaves of T' and define
D>y ={v e V(T) : degv > 2}. Prove that

UT)=2+ Z (degv —2)

’UEDZQ

Solution. [#1] Let L denote the set of leaves of T'; note that since 7' has at least two vertices
(and hence has no isolated vertices), we have V(T') = L U D>2. Now,

=[LI=)"1=) (2—degv) = - (degv—2).
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We next invoke the handshaking lemma to find that

> (degv —2) = Z degv— Y 2= Y degv—2[V(T)| =2|E(T)| - 2|V(T)| = 2.

veV(T) veV(T veV(T) veV(T)
Therefore,
2= ) (degv—2)= > (degv—2)+ ) (degv—2)= > (degv—2)—«T),
veV(T) vED>4 veEL vED>y
from which the claim follows. O

Solution. [#2] We prove the claim by induction on n = |V (T))|.

The base case is n = 2, in which case we must have 7' = Ky. Thus ¢(T') = 2 and D>2 = @ and
so the claim holds.

Now suppose that n > 3. Fix any leave x € V(T') (we know x exists since T" has at least two
leaves) and let y € V(T') be the unique neighbor of . Now, consider the tree 7" = T'— x and define
DL, = {v € V(T') : degp v > 2}. Since T” has n — 1 > 2 vertices, we can apply the induction
hypothesis to 7" to find that

UT) =2+ ) (deggv—2).

I
UED22

Observe that degp v = degp v for all v € V(T”) \ {y} and that degy y = degpy — 1. In particular,
by ignoring the vertex y (and noting that certainly = ¢ D>2, we have

Z (degp v —2) = Z (degpv — 2).

veDL,\{y} veD>2\{y}

We now consider adding back the vertex z; here we must consider what happens with the vertex y.
Case 1: deggy > 2. Here, we certainly have y € DL > and y € D>2 and so

Z (degv —2) = Z (degv —2) + 1;

veDS, v€ED>

thus we must show that ¢(T") = ¢(7") + 1. But this is clear: x is a leaf of T" and y is not a leaf of T".
Case 1: degyy = 1. Here, we have y ¢ DY 5o yet y € D>9. However, degry — 2 = 0 and so

Z (degv —2) = Z (degv — 2);

veD, vED >,

thus we must show that ¢(T) = ¢(T"). To see this, we know that y is a leaf of 77, but is not a leaf
of T'; however, x is a leaf of T. ]

Problem 3 (3 pts). Fix an integer n > 2. Prove that a sequence of integers di, . .., d,, is the degree
sequence of some tree if and only if d; > 1 for all ¢ € [n] and ) ;" | d; = 2n — 2.



Solution. [#1] (=) Suppose that di,...,d, is the degree sequence of a tree T'. Since n > 2, we
know that 6(7") > 1 (or else T is disconnected) and so d; > 1 for all i € [n]. Then the handshaking
lemma implies that

f:di = 2|B(T)| = 2(n — 1) = 2n — 2.
=1

(<) We prove the claim by induction on n > 2.

For the base case of n = 2, we must have dy +dy = 2 if and only if d; = do = 1 since di,do > 1.
Note that this is exactly the degree sequence of Ko which is a tree.

Now suppose that n > 3. Without loss of generality, we may suppose that di > --- > d,.
Therefore,

nd, < Zdi < ndj.
=1

In particular, nd,, < 2n — 2 and so d,, <2 — (2/n) < 2. This implies that d,, = 1 since d,, > 1 by
assumption. Similarly, nd; > 2n — 2 and so dy > 2 — (2/n) > 1 since n > 3 and so d; > 2.

Now, consider the sequence 71, ...,7,—1 where v; = d; — 1 and ; = d; for all i € [n — 1]. From
above, we know that ~; > 1 for all ¢ € [n — 1]. Additionally, since d,, = 1, we have

n—1 n—1 n
S vi=di-1)+> di= (Zdz) —2=2n—4=2(n—1)—2.
=1

=2 i=1

Thus, by the induction hypothesis, we can find a tree T' with vertex set V(T') = {v1,...,v,-1} such
that degv; = 7;. From here, we build a new tree T” by appending a new vertex v,, which is adjacent
to only v1. Certainly 7" is a tree since T is a tree and we only added a new leaf. Furthermore,
degr v, =1 =d,, degp v1 = degprv) =v1+1 =d;y and degp v; =v; =d; foralli € {2,...,n—1}.
Therefore, T” has degree sequence dy,...,d, and we have established the claim. ]

Solution. [#2] (=) Same as in the first solution.

(<) Without loss of generality, we may suppose that d; > --- > d,. Fix V = {v1,...,v,} for
notational ease. Roughly speaking, we show that we can build the desired tree greedily, vertex by
vertex.

In order to show this is possible, we prove the following claim. (It is best to understand the
proof of the claim as an algorithm for building the tree)

Claim 1. For each k € [n], there is a graph F on vertex set V with the following properties:
1. Fl{v1,...,v;}] is a tree.
2. degpv; < d; for alli € [n], and
3. degpv; =0 forallie {k+1,...,n}, and

4. If k =n, then degpv; = d; for all i € [n]. If k < n — 1, then there is some i € [k] for which
dengi < dl — 1.

Proof. We prove the claim by induction on k.
For the base case of k = 1, we can take F = (V, @) which clearly satisfies all properties since
dy > 1.



Now suppose that k € {2,...,n—1}. By the induction hypothesis, there is a graph Fj_; which
satisfies the conditions for the value k —1 > 1. Let j € [k — 1] be such that degp, _ v; < dj — 1,
which is guaranteed to exist. We build a graph I’ by adding the edge vjv; to Fj,_1. We claim that
F is the graph we’re looking for.

1. Observe that F[{vi,...,v5-1}] = Fir—1[{vi,...,vk_1}] since we only added the edge v;vj
for some j € [k — 1]. Thus, F[{vi,...,vx_1}] is a tree by the induction hypothesis. Then
F[{v1,...,v}] is formed by adding a leaf to F[{v1,...,vx_1}] and so it is a tree as desired.

2. Notice that degp vy = 1 < dj and that degpv; = degp, | v; + 1 < d;. Furthermore, for all
i € [n]\ {J,k}, we have degp v; = degp, , v; < d; by the induction hypothesis.

3. Fori € {k+1,...,n}, we have degp v; = degp, , v; = 0 by the induction hypothesis.

4. This is the most involved step.

Assume first that k£ = n, in which case we would have F[{vi,...,v;}| = F[V] = F. Property
1 then says that F' is a tree and so, by using property 2, we have

n n
2(n—1) =) degpuv; <Y di=2n-2.
i=1 =1

Thus we must have equality throughout and so degp v; = d; for all i € [n] as needed.

Now, we know that degpv; < d; for all i € [k] (property 2), the only way that there is no
i € [k] for which degpv; < d; — 1 is if degp v; = d; for all i € [k]. We show that if this is the
case, then k = n, which will satisfy the claim.

Since deg v; = d; for all i € [k], we know that dy = degp v = 1. In particular, d; = 1 for all
i € {k,...,n} since we have dy > --- > d,, > 1.

Now, F[{v1,...,v;}] is a tree and so it has exactly k — 1 edges. Additionally, degrv; = 0
for all : € {k+1,...,n} and so all edges of F' are among {v1,...,vt}. We thus apply the
handshaking lemma to conclude that

k k
Q(k—l):Zdengi:Zdi.
i=1 i=1
Recalling that d; = 1 for all i € {k 4+ 1,...,n} we see that
2m—2=) di=(m-k)+20k-1) = 2m=nt+k = k=n,
i=1

as needed. O

To finish the proof of the problem, let F’ be the graph guaranteed by the k = n case of Claim 1.
Then F[{vi,...,v,}] = F is a tree by the first property and degp v; = d; for all i € [n] by the last
property. Thus F'is a tree with degree sequence dy, ..., d,, just like we wanted. O

Solution. [#3] (=) Same as in the first solution.
(<) We prove the following two claims, which are more general than strictly necessary for this
problem.



Claim 2. Ifd; > --->d, > 1 and )", d; = 2k for some k € [n—1], then dy,...,d, is graphical.

Proof #1. We employ the Erdés—Gallai conditions. Certainly Y, d; = 2k is even, so fix any
r € [n]; we must show that >0 d; < r(r—1)+> 1" . min{r,d;}. We do so via the following
train of inequalities:

Zdi:Qk— Z di<2k—(n—r)<2(n—1)—(n—r)=n+r—2
i=1 i=r+1
=20r—1)+(n—r)<2(r—1)+ Y min{r,d;}
1=r+1
n

<r(r—1)+ Z min{r, d;}. O
i=r+1

Proof #2. We prove this by induction on k. For a base-case, consider £k = 1 and any n > 2. Then
Yoiidi=2and d; >--->d, > 1imply that n = 2 and d; = dy = 1, which is the degree sequence
of KQ.

Now consider k > 2. We first notice that 2k =Y ;" ; d; > di+(n—1) andso d; < 2k—(n—1) <
n — 1 since k € [n — 1]. Thus, consider the sequence 7a,...,v, where v, = d; — 1 if i < d; +1
and v; = d; if i > dy + 1 (i.e. the sequence used in the Havel-Hakimi algorithm). We claim that
Y2, ..., 1S graphical. Suppose that there are z zero values among 7o, ...,v,; note that z < d
since d; > 1 for all 4. If z = n—1, then s, ..., 7, is the 0 sequence, which is graphical; thus suppose
that z < n — 1. Observe that

n di+1 n n n
D= (di-1+ Y di= (Zdi) —dy = <Zd@'> = 2dy = 2(k — dy).
1=2 1=2 i=d1+2 1=2 i=1

We claim that 1 < k—d; < (n—1—2)— 1. Firstly, we know that d; < 2k — (n — 1) < k since
k<n-—1andsok—d; >0. Also, if Kk —d; =0, then s, ...,, is the zero sequence, so k —dy > 1.
Now, z<dyandson—1—z>n—1—dy >k—dy. If k—dy =n—1— z, then we must have

k =n—1and d; = z. Note that then 75 = --- = 74,41 =0 and so dy = --- = dg,+1 = 1, which
implies that dy = --- = d,, = 1. Thus, 2(n—1) =37 d;=di+(n—1)=z2+(n—-1) = z=n—-1
and so 72, ...,V is the zero sequence again.

Putting these observations together, we have k —d; € [(n —z—1) — 1] and certainly k —d; < k
since d; > 1. Thus, we may apply the induction hypothesis to the n — z — 1 many ~;’s which are
non-zero to find a realization of that sequence. Adding z isolated vertices to this realization is then
a realization of 7yo,...,7v,. In any case, 7o, ...,7, is graphical and so di,...,d, is also graphical
thanks to Havel-Hakimi. O

Claim 3. Ifd; > --- > d, > 1 is any graphical sequence with Y ;" | d; > 2(n — c) where ¢ is some
positive integer, then there is a realization which has at most ¢ connected components.

Proof. Since dy,...,d, is assumed to be graphical, there is at least one realization. Let G be a
realization with the fewest number of connected components. Suppose that the connected compo-
nents of G are G, ..., Gg; we wish to show that & < ¢, so suppose for the sake of contradiction that

k> c+1. Since > ; d; > 2(n—c), the handshaking lemma tells us that G has at least n — ¢ many
edges. If G were acyclic, then |[E(G)| =n—k <n—(c+1) < n—c¢, sowe know that G contains a
cycle. Without loss of generality, G1 contains a cycle; let x and y be any pair of adjacent vertices
on this cycle. Now consider Go; since d; > 1 for each 7, we know that G5 contains an edge, call



one of them wv. Thus, zy and uv are edges of G and zu and yv are non-edges of G. Consider the
2-switch where we replace ry and wv by zu and yv and call the resulting graph G’. Since xy was
chosen to be an edge of a cycle, we observe that G’ has k — 1 connected components (the 2-switch
“merged” G and Gs); a contradiction since G’ is also a realization of dy, ..., d,. O

Now to finish the actual problem: without loss of generality, we may suppose that d; > --- >
dn, > 1. By assumption > ;d; = 2(n — 1) and so Claim 2 implies that di,...,d, is graphical.
Then Claim 3 implies that there is a realization G with at most one connected component (i.e. G
is connected). Finally, the handshaking lemma implies that G has exactly n — 1 edges and so G is
a tree.

In fact, we have shown more: di,...,d, is the degree sequence of a forest with no isolated
vertices if and only if d; > 1 for all ¢ € [n], and the sum ) ", d; is even and bounded above by
2n — 2. O

Problem 4 (2 pts). Let G be a connected graph and let w: E(G) — R be a weight function.
Show that if all weights are distinct (that is w(e) # w(s) for all distinct e, s € E(G)), then G has
a unique minimum spanning tree.

Solution. We know that G has at least one minimum spanning tree since G is connected. Thus
suppose for the sake of contradiction that there are at least two distinct minimum spanning trees,
call two of them T} and T,. Since T} and T, are different, we know that E(T}) # E(T3). In
particular, the symmetric difference E(T}) A E(T3) is nonempty.! Let e € E(Ty) /A E(T3) be the
smallest weight edge in this set. Without loss of generality, we may suppose that e € E(T7)\ E(T3).
Now, consider the graph H = T, + e; since e ¢ E(T») and T» is a tree, H must contain a cycle C'
which uses the edge e. Of course, T; is a tree and so there must be some edge s € E(C) \ E(T1);
note that s € F(Ty). Thus set T5 = H — s = T + ¢ — s, which is a spanning tree since we removed
an edge from the cycle C'in H.

Now, s € E(Tz) \ E(T1) C E(T1) A\ E(T3) and so w(s) > w(e) since e was chosen to be the
smallest weight element of this set and all weights are distinct. But then 75 is a spanning tree with
w(Ts) = w(Tz) + w(e) — w(s) < w(Tz) which contradicts the fact that 75 is a minimum weight
spanning tree. O

"Recall that X AY = (X \Y)U (Y \ X) = (XUY)\ (X NY).



