
MATH 314 HW #5 Solutions Feb 8

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw5.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

Problem 1 (0.5 + 0.5 + 1 pts). For a fixed integer k ≥ 3, a graph G is said to have property Ck
if every subgraph of G with at least k edges contains a cycle. For a fixed integer k ≥ 4, a graph G
is said to have property Ek if every subgraph of G with at least k edges contains an even cycle.

1. For each k ≥ 3, construct a graph G which has property Ck and has |E(G)| =
(
k
2

)
.

2. For each k ≥ 4, construct a graph G which has property Ek and has |E(G)| = ⌈k/2⌉⌊k/2⌋.

3. Prove that if G is a connected graph with property Ck, then |E(G)| ≤
(
k
2

)
.

Solution.

1. Consider G = Kk, which has |E(G)| =
(
k
2

)
and |V (G)| = k. If H is any subgraph of G with

at least k edges, then |E(H)| ≥ k = |V (G)| ≥ |V (H)|; thus H must contain a cycle.

2. Consider G = K⌈k/2⌉,⌊k/2⌋ which has |E(G)| = ⌈k/2⌉⌊k/2⌋ and |V (G)| = k. If H is any
subgraph of G with at least k edges, then |E(H)| ≥ k = |V (G)| ≥ |V (H)|; thus H must
contain a cycle. Now, H is a subgraph of G, which is bipartite, and so H is also bipartite.
Therefore, this cycle contained in H must be of even length.

3. Suppose that G has n vertices. Then since G is connected, it contains a spanning tree T ,
which has n−1 edges. Since T has no cycles and G has property Ck, we must have n−1 < k,
and so n ≤ k. Therefore, |E(G)| ≤

(
n
2

)
≤

(
k
2

)
as desired.

N.b. Part 3 remains true even if G is disconnected (this is not too difficult to show, but it does
require a sneaky idea). Additionally, Part 2 is tight; that is, if G is any graph with property Ek,
then |E(G)| ≤ ⌈k/2⌉⌊k/2⌋ (this isn’t an easy result). If you’re curious about either of these, take a
look at Theorem 3.8, Theorem 1.2 and Lemma 3.10 in the paper https://arxiv.org/abs/1711.
02082.

Problem 2 (3 pts). This problem expands on the observation that trees on at least two vertices
have at least two leaves.

Let T be a tree on at least two vertices. Let ℓ(T ) denote the number of leaves of T and define
D≥2 = {v ∈ V (T ) : deg v ≥ 2}. Prove that

ℓ(T ) = 2 +
∑

v∈D≥2

(deg v − 2)

Solution. [#1] Let L denote the set of leaves of T ; note that since T has at least two vertices
(and hence has no isolated vertices), we have V (T ) = L ⊔D≥2. Now,

ℓ(T ) = |L| =
∑
v∈L

1 =
∑
v∈L

(2− deg v) = −
∑
v∈L

(deg v − 2).
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We next invoke the handshaking lemma to find that∑
v∈V (T )

(deg v − 2) =
∑

v∈V (T )

deg v −
∑

v∈V (T )

2 =
∑

v∈V (T )

deg v − 2|V (T )| = 2|E(T )| − 2|V (T )| = −2.

Therefore,

−2 =
∑

v∈V (T )

(deg v − 2) =
∑

v∈D≥2

(deg v − 2) +
∑
v∈L

(deg v − 2) =
∑

v∈D≥2

(deg v − 2)− ℓ(T ),

from which the claim follows.

Solution. [#2] We prove the claim by induction on n = |V (T )|.
The base case is n = 2, in which case we must have T ∼= K2. Thus ℓ(T ) = 2 and D≥2 = ∅ and

so the claim holds.
Now suppose that n ≥ 3. Fix any leave x ∈ V (T ) (we know x exists since T has at least two

leaves) and let y ∈ V (T ) be the unique neighbor of x. Now, consider the tree T ′ = T −x and define
D′

≥2 = {v ∈ V (T ′) : degT ′ v ≥ 2}. Since T ′ has n − 1 ≥ 2 vertices, we can apply the induction
hypothesis to T ′ to find that

ℓ(T ′) = 2 +
∑

v∈D′
≥2

(degT ′ v − 2).

Observe that degT ′ v = degT v for all v ∈ V (T ′) \ {y} and that degT ′ y = degT y− 1. In particular,
by ignoring the vertex y (and noting that certainly x /∈ D≥2, we have∑

v∈D′
≥2\{y}

(degT ′ v − 2) =
∑

v∈D≥2\{y}

(degT v − 2).

We now consider adding back the vertex x; here we must consider what happens with the vertex y.
Case 1: degT ′ y ≥ 2. Here, we certainly have y ∈ D′

≥2 and y ∈ D≥2 and so∑
v∈D′

≥2

(deg v − 2) =
∑

v∈D≥2

(deg v − 2) + 1;

thus we must show that ℓ(T ) = ℓ(T ′)+1. But this is clear: x is a leaf of T and y is not a leaf of T ′.
Case 1: degT ′ y = 1. Here, we have y /∈ D′

≥2 yet y ∈ D≥2. However, degT y − 2 = 0 and so∑
v∈D′

≥2

(deg v − 2) =
∑

v∈D≥2

(deg v − 2);

thus we must show that ℓ(T ) = ℓ(T ′). To see this, we know that y is a leaf of T ′, but is not a leaf
of T ; however, x is a leaf of T .

Problem 3 (3 pts). Fix an integer n ≥ 2. Prove that a sequence of integers d1, . . . , dn is the degree
sequence of some tree if and only if di ≥ 1 for all i ∈ [n] and

∑n
i=1 di = 2n− 2.



Solution. [#1] (⇒) Suppose that d1, . . . , dn is the degree sequence of a tree T . Since n ≥ 2, we
know that δ(T ) ≥ 1 (or else T is disconnected) and so di ≥ 1 for all i ∈ [n]. Then the handshaking
lemma implies that

n∑
i=1

di = 2|E(T )| = 2(n− 1) = 2n− 2.

(⇐) We prove the claim by induction on n ≥ 2.
For the base case of n = 2, we must have d1+ d2 = 2 if and only if d1 = d2 = 1 since d1, d2 ≥ 1.

Note that this is exactly the degree sequence of K2 which is a tree.
Now suppose that n ≥ 3. Without loss of generality, we may suppose that d1 ≥ · · · ≥ dn.

Therefore,

ndn ≤
n∑

i=1

di ≤ nd1.

In particular, ndn ≤ 2n − 2 and so dn ≤ 2 − (2/n) < 2. This implies that dn = 1 since dn ≥ 1 by
assumption. Similarly, nd1 ≥ 2n− 2 and so d1 ≥ 2− (2/n) > 1 since n ≥ 3 and so d1 ≥ 2.

Now, consider the sequence γ1, . . . , γn−1 where γ1 = d1 − 1 and γi = di for all i ∈ [n− 1]. From
above, we know that γi ≥ 1 for all i ∈ [n− 1]. Additionally, since dn = 1, we have

n−1∑
i=1

γi = (d1 − 1) +
n−1∑
i=2

di =

( n∑
i=1

di

)
− 2 = 2n− 4 = 2(n− 1)− 2.

Thus, by the induction hypothesis, we can find a tree T with vertex set V (T ) = {v1, . . . , vn−1} such
that deg vi = γi. From here, we build a new tree T ′ by appending a new vertex vn which is adjacent
to only v1. Certainly T ′ is a tree since T is a tree and we only added a new leaf. Furthermore,
degT ′ vn = 1 = dn, degT ′ v1 = degT v1 = γ1+1 = d1 and degT ′ vi = γi = di for all i ∈ {2, . . . , n−1}.
Therefore, T ′ has degree sequence d1, . . . , dn and we have established the claim.

Solution. [#2] (⇒) Same as in the first solution.
(⇐) Without loss of generality, we may suppose that d1 ≥ · · · ≥ dn. Fix V = {v1, . . . , vn} for

notational ease. Roughly speaking, we show that we can build the desired tree greedily, vertex by
vertex.

In order to show this is possible, we prove the following claim. (It is best to understand the
proof of the claim as an algorithm for building the tree)

Claim 1. For each k ∈ [n], there is a graph F on vertex set V with the following properties:

1. F [{v1, . . . , vk}] is a tree.

2. degF vi ≤ di for all i ∈ [n], and

3. degF vi = 0 for all i ∈ {k + 1, . . . , n}, and

4. If k = n, then degF vi = di for all i ∈ [n]. If k < n− 1, then there is some i ∈ [k] for which
degF vi ≤ di − 1.

Proof. We prove the claim by induction on k.
For the base case of k = 1, we can take F = (V,∅) which clearly satisfies all properties since

d1 ≥ 1.



Now suppose that k ∈ {2, . . . , n− 1}. By the induction hypothesis, there is a graph Fk−1 which
satisfies the conditions for the value k − 1 ≥ 1. Let j ∈ [k − 1] be such that degFk−1

vj ≤ dj − 1,
which is guaranteed to exist. We build a graph F by adding the edge vkvj to Fk−1. We claim that
F is the graph we’re looking for.

1. Observe that F [{v1, . . . , vk−1}] = Fk−1[{v1, . . . , vk−1}] since we only added the edge vjvk
for some j ∈ [k − 1]. Thus, F [{v1, . . . , vk−1}] is a tree by the induction hypothesis. Then
F [{v1, . . . , vk}] is formed by adding a leaf to F [{v1, . . . , vk−1}] and so it is a tree as desired.

2. Notice that degF vk = 1 ≤ dk and that degF vj = degFk−1
vj + 1 ≤ dj . Furthermore, for all

i ∈ [n] \ {j, k}, we have degF vi = degFk−1
vi ≤ di by the induction hypothesis.

3. For i ∈ {k + 1, . . . , n}, we have degF vi = degFk−1
vi = 0 by the induction hypothesis.

4. This is the most involved step.

Assume first that k = n, in which case we would have F [{v1, . . . , vk}] = F [V ] = F . Property
1 then says that F is a tree and so, by using property 2, we have

2(n− 1) =
n∑

i=1

degF vi ≤
n∑

i=1

di = 2n− 2.

Thus we must have equality throughout and so degF vi = di for all i ∈ [n] as needed.

Now, we know that degF vi ≤ di for all i ∈ [k] (property 2), the only way that there is no
i ∈ [k] for which degF vi ≤ di − 1 is if degF vi = di for all i ∈ [k]. We show that if this is the
case, then k = n, which will satisfy the claim.

Since degF vi = di for all i ∈ [k], we know that dk = degF vk = 1. In particular, di = 1 for all
i ∈ {k, . . . , n} since we have d1 ≥ · · · ≥ dn ≥ 1.

Now, F [{v1, . . . , vk}] is a tree and so it has exactly k − 1 edges. Additionally, degF vi = 0
for all i ∈ {k + 1, . . . , n} and so all edges of F are among {v1, . . . , vk}. We thus apply the
handshaking lemma to conclude that

2(k − 1) =

k∑
i=1

degF vi =

k∑
i=1

di.

Recalling that di = 1 for all i ∈ {k + 1, . . . , n} we see that

2n− 2 =

n∑
i=1

di = (n− k) + 2(k − 1) =⇒ 2n = n+ k =⇒ k = n,

as needed.

To finish the proof of the problem, let F be the graph guaranteed by the k = n case of Claim 1.
Then F [{v1, . . . , vn}] = F is a tree by the first property and degF vi = di for all i ∈ [n] by the last
property. Thus F is a tree with degree sequence d1, . . . , dn, just like we wanted.

Solution. [#3] (⇒) Same as in the first solution.
(⇐) We prove the following two claims, which are more general than strictly necessary for this

problem.



Claim 2. If d1 ≥ · · · ≥ dn ≥ 1 and
∑n

i=1 di = 2k for some k ∈ [n− 1], then d1, . . . , dn is graphical.

Proof #1. We employ the Erdős–Gallai conditions. Certainly
∑n

i=1 di = 2k is even, so fix any
r ∈ [n]; we must show that

∑r
i=1 di ≤ r(r − 1) +

∑n
i=r+1min{r, di}. We do so via the following

train of inequalities:

r∑
i=1

di = 2k −
n∑

i=r+1

di ≤ 2k − (n− r) ≤ 2(n− 1)− (n− r) = n+ r − 2

= 2(r − 1) + (n− r) ≤ 2(r − 1) +
n∑

i=r+1

min{r, di}

≤ r(r − 1) +
n∑

i=r+1

min{r, di}.

Proof #2. We prove this by induction on k. For a base-case, consider k = 1 and any n ≥ 2. Then∑n
i=1 di = 2 and d1 ≥ · · · ≥ dn ≥ 1 imply that n = 2 and d1 = d2 = 1, which is the degree sequence

of K2.
Now consider k ≥ 2. We first notice that 2k =

∑n
i=1 di ≥ d1+(n−1) and so d1 ≤ 2k−(n−1) ≤

n − 1 since k ∈ [n − 1]. Thus, consider the sequence γ2, . . . , γn where γi = di − 1 if i ≤ d1 + 1
and γi = di if i > d1 + 1 (i.e. the sequence used in the Havel–Hakimi algorithm). We claim that
γ2, . . . , γn is graphical. Suppose that there are z zero values among γ2, . . . , γn; note that z ≤ d1
since di ≥ 1 for all i. If z = n−1, then γ2, . . . , γn is the 0 sequence, which is graphical; thus suppose
that z < n− 1. Observe that

n∑
i=2

γi =

d1+1∑
i=2

(di − 1) +

n∑
i=d1+2

di =

( n∑
i=2

di

)
− d1 =

( n∑
i=1

di

)
− 2d1 = 2(k − d1).

We claim that 1 ≤ k − d1 ≤ (n − 1 − z) − 1. Firstly, we know that d1 ≤ 2k − (n − 1) ≤ k since
k ≤ n− 1 and so k− d1 ≥ 0. Also, if k− d1 = 0, then γ2, . . . , γn is the zero sequence, so k− d1 ≥ 1.
Now, z ≤ d1 and so n − 1 − z ≥ n − 1 − d1 ≥ k − d1. If k − d1 = n − 1 − z, then we must have
k = n − 1 and d1 = z. Note that then γ2 = · · · = γd1+1 = 0 and so d2 = · · · = dd1+1 = 1, which
implies that d2 = · · · = dn = 1. Thus, 2(n−1) =

∑n
i=1 di = d1+(n−1) = z+(n−1) =⇒ z = n−1

and so γ2, . . . , γn is the zero sequence again.
Putting these observations together, we have k− d1 ∈ [(n− z− 1)− 1] and certainly k− d1 < k

since d1 ≥ 1. Thus, we may apply the induction hypothesis to the n − z − 1 many γi’s which are
non-zero to find a realization of that sequence. Adding z isolated vertices to this realization is then
a realization of γ2, . . . , γn. In any case, γ2, . . . , γn is graphical and so d1, . . . , dn is also graphical
thanks to Havel–Hakimi.

Claim 3. If d1 ≥ · · · ≥ dn ≥ 1 is any graphical sequence with
∑n

i=1 di ≥ 2(n− c) where c is some
positive integer, then there is a realization which has at most c connected components.

Proof. Since d1, . . . , dn is assumed to be graphical, there is at least one realization. Let G be a
realization with the fewest number of connected components. Suppose that the connected compo-
nents of G are G1, . . . , Gk; we wish to show that k ≤ c, so suppose for the sake of contradiction that
k ≥ c+1. Since

∑n
i=1 di ≥ 2(n− c), the handshaking lemma tells us that G has at least n− c many

edges. If G were acyclic, then |E(G)| = n− k ≤ n− (c+ 1) < n− c, so we know that G contains a
cycle. Without loss of generality, G1 contains a cycle; let x and y be any pair of adjacent vertices
on this cycle. Now consider G2; since di ≥ 1 for each i, we know that G2 contains an edge, call



one of them uv. Thus, xy and uv are edges of G and xu and yv are non-edges of G. Consider the
2-switch where we replace xy and uv by xu and yv and call the resulting graph G′. Since xy was
chosen to be an edge of a cycle, we observe that G′ has k − 1 connected components (the 2-switch
“merged” G1 and G2); a contradiction since G′ is also a realization of d1, . . . , dn.

Now to finish the actual problem: without loss of generality, we may suppose that d1 ≥ · · · ≥
dn ≥ 1. By assumption

∑n
i=1 di = 2(n − 1) and so Claim 2 implies that d1, . . . , dn is graphical.

Then Claim 3 implies that there is a realization G with at most one connected component (i.e. G
is connected). Finally, the handshaking lemma implies that G has exactly n− 1 edges and so G is
a tree.

In fact, we have shown more: d1, . . . , dn is the degree sequence of a forest with no isolated
vertices if and only if di ≥ 1 for all i ∈ [n], and the sum

∑n
i=1 di is even and bounded above by

2n− 2.

Problem 4 (2 pts). Let G be a connected graph and let w : E(G) → R be a weight function.
Show that if all weights are distinct (that is w(e) ̸= w(s) for all distinct e, s ∈ E(G)), then G has
a unique minimum spanning tree.

Solution. We know that G has at least one minimum spanning tree since G is connected. Thus
suppose for the sake of contradiction that there are at least two distinct minimum spanning trees,
call two of them T1 and T2. Since T1 and T2 are different, we know that E(T1) ̸= E(T2). In
particular, the symmetric difference E(T1)△ E(T2) is nonempty.1 Let e ∈ E(T1)△ E(T2) be the
smallest weight edge in this set. Without loss of generality, we may suppose that e ∈ E(T1)\E(T2).
Now, consider the graph H = T2 + e; since e /∈ E(T2) and T2 is a tree, H must contain a cycle C
which uses the edge e. Of course, T1 is a tree and so there must be some edge s ∈ E(C) \ E(T1);
note that s ∈ E(T2). Thus set T3 = H − s = T2 + e− s, which is a spanning tree since we removed
an edge from the cycle C in H.

Now, s ∈ E(T2) \ E(T1) ⊆ E(T1) △ E(T2) and so w(s) > w(e) since e was chosen to be the
smallest weight element of this set and all weights are distinct. But then T3 is a spanning tree with
w(T3) = w(T2) + w(e) − w(s) < w(T2) which contradicts the fact that T2 is a minimum weight
spanning tree.

1Recall that X △ Y = (X \ Y ) ∪ (Y \X) = (X ∪ Y ) \ (X ∩ Y ).


