
MATH 314 HW #6 Solutions Mar 1

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw6.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

Problem 1 (0.5 + 0.5 pts). Determine the Prüfer code of the following trees (using the standard
ordering of the integers).

1.

12 3

4

56

7

8

2.

1

23

4 56

7

89

Solution.

1. (1, 7, 7, 7, 1, 1)

2. (4, 2, 9, 9, 5, 5, 6)

Problem 2 (0.5 + 0.5 pts). For the following sequences, draw a picture of the (labeled) tree which
has that sequence as its Prüfer code (using the standard ordering of the integers). Your tree should
have vertex-set [n] for some integer n.

1. (5, 7, 5, 1, 3, 5, 5)

2. (4, 4, 1, 2, 1, 2, 3)

Solution.

1.

https://mathematicaster.org/teaching/graphs2022/sol-hw6.pdf


1

2

3 45

6

7

8

9

2.

1 2 345

6 78 9

Problem 3 (1 pts). Determine (with proof) all trees T (up to isomorphism) on n ≥ 2 vertices
whose Prüfer code uses each element of V (T ) at most once (under any arbitrary ordering of V (T )).

Solution. Under any ordering of V (T ), the symbol x ∈ V (T ) appears exactly deg x − 1 many
times in the Prüfer code of T (Lemma 2 from the notes). Therefore, x appears at most once in
the Prüfer code of T if and only if deg x ≤ 2. Phrased differently, the Prüfer code of T sees each
element of V (T ) at most once if and only if ∆(T ) ≤ 2. This happens if and only if T ∼= Pn as per
HW3.4.

Problem 4 (2 pts). (HW5.3 revisited) Fix an integer n ≥ 2 and let d1, . . . , dn be a sequence of
positive integers with

∑n
i=1 di = 2n− 2. Use Prüfer codes to show that there is a tree with degree

sequence d1, . . . , dn.

Solution. Since
∑n

i=1 di = 2n − 2, we have that
∑n

i=1(di − 1) = n − 2. Additionally, di − 1 is
a non-negative integer since di is a positive integer. We can therefore find a sequence of integers
P ∈ [n]n−2 such that, for each i ∈ [n], the element i appears exactly di − 1 times in P . Indeed,
simply write 1 down d1 − 1 many times, 2 down d2 − 1 many times, etc.

Let T be the tree on vertex-set [n] whose Prüfer code is P . Then Lemma 2 from the notes
implies that degT i = di for each i ∈ [n]; hence T has degree sequence d1, . . . , dn, as needed.

Problem 5 (2 pts). For a graph G, define the relation R on V (G) by u R v if and only if u = v
or there is a cycle in G containing both u and v. Find a graph G wherein R is not an equivalence
relation on V (G). (You are welcome to define G via a picture, though, of course, you must still
demonstrate that R is not an equivalence relation on this G)

Solution. Consider the following graph:

1 2 3

4 5



Observe that 1R2 as witnessed by the cycle (1, 2, 4), and 2R3 as witnessed by the cycle (2, 3, 5).
However, there is no cycle containing both 1 and 3 and so (1, 3) /∈ R. Thus R is not an equivalence
relation on this particular graph since R is not transitive.

Problem 6 (3 pts). For a graph G, define the relation R on E(G) by e R s if and only if e = s or
there is a cycle in G containing both e and s. Prove that R is an equivalence relation on E(G).

Solution. Reflexivity is obvious since e = e for any edge e ∈ E(G). Symmetry is also obvious
since if there is a cycle containing both e and s, then this same cycle contains both s and e.

Transitivity is the only interesting part. Suppose that eRs and sRt; we must show that eRt. If
either e = s or s = t, then this is immediate, so we may suppose that e, s, t are three distinct edges.
Thus, let Ces be a cycle inG containing both e and s and let Cst be a cycle inG containing both s and
t. Label Ces = (v1, . . . , vk) where e = v1vk and label Cst = (u1, . . . , uℓ) where t = u1uℓ; of course,
k, ℓ ≥ 3. Let i be the smallest index for which vi ∈ {u1, . . . , uℓ} and let j be the largest index for
which vj ∈ {u1, . . . , uℓ}; we begin by showing that both i, j exist and that i < j. Indeed, s belongs
to both Ces and to Cst and so s = vava+1 and s = ubub+1 for some a ∈ [k− 1] and some b ∈ [ℓ− 1]
(since e ̸= s and t ̸= s). In particular, va, va+1 ∈ {u1, . . . , uℓ} and so 1 ≤ i ≤ a < a + 1 ≤ j ≤ k.
Suppose that vi = ui′ and vj = uj′ for some i′, j′ ∈ [ℓ]; of course i′ ̸= j′. By the definition of i and
j, we know that {v1, . . . , vi−1} ∩ {u1, . . . , uℓ} = {vk, . . . , vj+1} ∩ {u1, . . . , uℓ} = ∅.

If i′ < j′, consider the sequence C = (v1, . . . , vi = ui′ , ui′−1, . . . , u1, uℓ, uℓ−1, . . . , uj′ = vj , vj+1, . . . , vk)
and if i′ > j′, consider the sequence C = (v1, . . . , vi = ui′ , ui′+1, . . . , uℓ, u1, u2, . . . , uj′ = vj , vj+1, . . . , vk).
By the earlier remark, in either case, C forms a cycle. Furthermore, since e = v1vk and t = u1uℓ,
C forms a cycle in G containing both e and t; thus e R t as needed.


