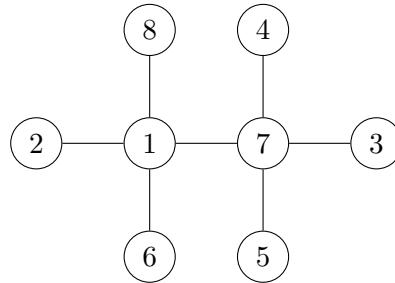


These solutions are from <https://mathematicaster.org/teaching/graphs2022/sol-hw6.pdf>

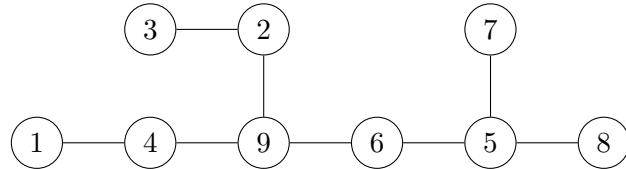
Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem.

Problem 1 (0.5 + 0.5 pts). Determine the Prüfer code of the following trees (using the standard ordering of the integers).

1.



2.



Solution.

1. (1, 7, 7, 7, 1, 1)
2. (4, 2, 9, 9, 5, 5, 6)

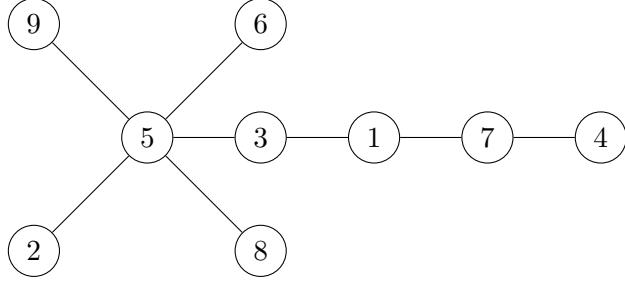
□

Problem 2 (0.5 + 0.5 pts). For the following sequences, draw a picture of the (labeled) tree which has that sequence as its Prüfer code (using the standard ordering of the integers). Your tree should have vertex-set $[n]$ for some integer n .

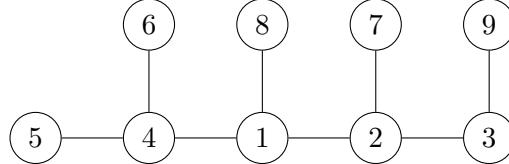
1. (5, 7, 5, 1, 3, 5, 5)
2. (4, 4, 1, 2, 1, 2, 3)

Solution.

1.



2.



□

Problem 3 (1 pts). Determine (with proof) all trees T (up to isomorphism) on $n \geq 2$ vertices whose Prüfer code uses each element of $V(T)$ at most once (under any arbitrary ordering of $V(T)$).

Solution. Under any ordering of $V(T)$, the symbol $x \in V(T)$ appears exactly $\deg x - 1$ many times in the Prüfer code of T (Lemma 2 from the notes). Therefore, x appears at most once in the Prüfer code of T if and only if $\deg x \leq 2$. Phrased differently, the Prüfer code of T sees each element of $V(T)$ at most once if and only if $\Delta(T) \leq 2$. This happens if and only if $T \cong P_n$ as per HW3.4. □

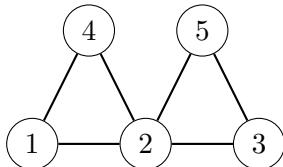
Problem 4 (2 pts). (HW5.3 revisited) Fix an integer $n \geq 2$ and let d_1, \dots, d_n be a sequence of positive integers with $\sum_{i=1}^n d_i = 2n - 2$. Use Prüfer codes to show that there is a tree with degree sequence d_1, \dots, d_n .

Solution. Since $\sum_{i=1}^n d_i = 2n - 2$, we have that $\sum_{i=1}^n (d_i - 1) = n - 2$. Additionally, $d_i - 1$ is a non-negative integer since d_i is a positive integer. We can therefore find a sequence of integers $P \in [n]^{n-2}$ such that, for each $i \in [n]$, the element i appears exactly $d_i - 1$ times in P . Indeed, simply write 1 down $d_1 - 1$ many times, 2 down $d_2 - 1$ many times, etc.

Let T be the tree on vertex-set $[n]$ whose Prüfer code is P . Then Lemma 2 from the notes implies that $\deg_T i = d_i$ for each $i \in [n]$; hence T has degree sequence d_1, \dots, d_n , as needed. □

Problem 5 (2 pts). For a graph G , define the relation R on $V(G)$ by $u R v$ if and only if $u = v$ or there is a cycle in G containing both u and v . Find a graph G wherein R is *not* an equivalence relation on $V(G)$. (You are welcome to define G via a picture, though, of course, you must still demonstrate that R is not an equivalence relation on this G)

Solution. Consider the following graph:



Observe that $1R2$ as witnessed by the cycle $(1, 2, 4)$, and $2R3$ as witnessed by the cycle $(2, 3, 5)$. However, there is no cycle containing both 1 and 3 and so $(1, 3) \notin R$. Thus R is not an equivalence relation on this particular graph since R is not transitive. \square

Problem 6 (3 pts). For a graph G , define the relation R on $E(G)$ by $e R s$ if and only if $e = s$ or there is a cycle in G containing both e and s . Prove that R is an equivalence relation on $E(G)$.

Solution. Reflexivity is obvious since $e = e$ for any edge $e \in E(G)$. Symmetry is also obvious since if there is a cycle containing both e and s , then this same cycle contains both s and e .

Transitivity is the only interesting part. Suppose that eRs and sRt ; we must show that eRt . If either $e = s$ or $s = t$, then this is immediate, so we may suppose that e, s, t are three distinct edges. Thus, let C_{es} be a cycle in G containing both e and s and let C_{st} be a cycle in G containing both s and t . Label $C_{es} = (v_1, \dots, v_k)$ where $e = v_1v_k$ and label $C_{st} = (u_1, \dots, u_\ell)$ where $t = u_1u_\ell$; of course, $k, \ell \geq 3$. Let i be the smallest index for which $v_i \in \{u_1, \dots, u_\ell\}$ and let j be the largest index for which $v_j \in \{u_1, \dots, u_\ell\}$; we begin by showing that both i, j exist and that $i < j$. Indeed, s belongs to both C_{es} and to C_{st} and so $s = v_a v_{a+1}$ and $s = u_b u_{b+1}$ for some $a \in [k-1]$ and some $b \in [\ell-1]$ (since $e \neq s$ and $t \neq s$). In particular, $v_a, v_{a+1} \in \{u_1, \dots, u_\ell\}$ and so $1 \leq i \leq a < a+1 \leq j \leq k$. Suppose that $v_i = u_{i'}$ and $v_j = u_{j'}$ for some $i', j' \in [\ell]$; of course $i' \neq j'$. By the definition of i and j , we know that $\{v_1, \dots, v_{i-1}\} \cap \{u_1, \dots, u_\ell\} = \{v_k, \dots, v_{j+1}\} \cap \{u_1, \dots, u_\ell\} = \emptyset$.

If $i' < j'$, consider the sequence $C = (v_1, \dots, v_i = u_{i'}, u_{i'-1}, \dots, u_1, u_\ell, u_{\ell-1}, \dots, u_{j'} = v_j, v_{j+1}, \dots, v_k)$ and if $i' > j'$, consider the sequence $C = (v_1, \dots, v_i = u_{i'}, u_{i'+1}, \dots, u_\ell, u_1, u_2, \dots, u_{j'} = v_j, v_{j+1}, \dots, v_k)$. By the earlier remark, in either case, C forms a cycle. Furthermore, since $e = v_1v_k$ and $t = u_1u_\ell$, C forms a cycle in G containing both e and t ; thus eRt as needed. \square