MATH 314 HW #7 Solutions Mar 22

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw7.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to
use the result from any problem on this (or previous) assignment as a part of your solution to a different
problem even if you have not solved the former problem.

Problem 1 (2pts). For infinitely many integers n, construct a graph G with the following proper-
ties:

e (G is connected and has n vertices, and
e (G is not a tree, and

e Every v € V(G) which is not a leaf of G is a cut-vertex of G.

“For infinitely many integers m...” means the following: Pick your favorite infinite subset A C N

and, for each n € A, build the desired graph for that n. For instance, maybe you pick A to be the
set of even naturals, or maybe you pick A to be the set of integers of the form 2¥, or maybe you
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pick A to be the set of all primes larger than 10 , etc. As long as A is infinite, you’re fine.

Solution. There are tons of examples; here’s just one such example which is easy to describe. Fix
any even integer n > 6 and set m = n/2 so m > 3 is an integer. Consider building the graph G by
attaching a unique leaf to each vertex of Cy,. In particular, G has vertex-set {v1, ..., Um, U1, ..., Uy}
where G[{v1,...,vn}] is a copy of Cy, and, for each i € [m], the unique neighbor of u; is v;. Now, G
has 2m = n many vertices and is connected by construction. Also, G is not a tree since it contains
an m-cycle. Now, observe that each u; is a leaf of GG since the only neighbor of u; is v;. On the

other hand, degv; = 3 for all 7; that is, the non-leaves of G are vy, ...,v,. Now, for any i € [m],
observe that u; is an isolated vertex in G — v;; thus G — v; is not connected. Hence G has the
property that every non-leaf is a cut-vertex as desired. ]

Problem 2 (1 + 1 pts). Let G be a graph and suppose that H is any spanning subgraph of G.
1. Prove that A\(G) > A(H).

2. Prove that x(G) > k(H).

Solution. [#1]
1. If G = K, then also H = K. Thus, \(G) = AM(H) = 0.

Otherwise, let S C E(G) be a minimum edge-cut of G. Since G — S is disconnected, we can
partition V(G) = A U B with A, B non-empty so that no edge of G — S crosses between A
and B. Now, V(G) = V(H) since H is a spanning subgraph of G, and so A, B also form a
partition of V(H) into non-empty pieces. Set S’ = SN E(H). Since E(H —S') C E(G - 5),
we know that no edge of H — S’ crosses between A and B. Thus S’ is an edge-cut of H and
so A(H) < |57 <|S| = A(G) as desired.

2. If G = K,, then k(G) =n —1. Also, H has V(H) = V(G) and so k(H) < n —1 as well.
Thus, going forward, we may suppose that G is not a clique.
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Thus, let U C V(G) be a minimum vertex-cut of G. Since G — U is disconnected, we can
partition V(G) \ U = AU B with A, B non-empty so that no edge of G — U crosses between
A and B. Now, V(G) = V(H) since H is a spanning subgraph of G and so A, B also form
a partition of V(H) — U into non-empty pieces. Thus, U is also a vertex-cut of H and so

k(H) < |U| = k(G).
O

Solution. [#2]

1. Fix any u # v € V(H) = V(G) (spanning subgraph). Menger’s theorem for edge-connectivity
tells us that H contains at least A(H) many edge-disjoint u-v paths. Since H is a subgraph
of G, these paths also exist in G and so G contains at least \(H) many edge-disjoint u-v
paths as well. Thus, since V(H) = V(G), Menger’s theorem for edge-connectivity tells us
that \(G) > \(H).

2. Fix any u # v € V(H) = V(G) (spanning subgraph). Menger’s theorem for vertex-
connectivity tells us that H contains at least x(H) many internally-disjoint u-v paths. Since
H is a subgraph of G, these paths also exist in G and so G contains at least x(H) many
edge-disjoint u-v paths as well. Thus, since V(H) = V(G), Menger’s theorem for vertex-
connectivity tells us that x(G) > x(H).

O
Problem 3 (1 + 2 pts). Let G = (V, E) be a graph with at least one edge and fix any e € E.

1. Prove that A(G) > A(G —e) > A\(G) — 1.

2. Prove that k(G) > k(G —¢) > k(G) — 1.

Solution. [#1]

1. Since G — e is a spanning subgraph of GG, Problem 2 implies that A(G) > A\(G — e).

In this case, we don’t need to worry about K7 since it doesn’t have any edges. So let S be
a minimum edge-cut of G — e, so |S| = MG — e). Then S U {e} is an edge-cut of G and so
AMG)<IS|+1=AG-¢e)+1 = ANG—¢) > \G) —1.

2. We consider first the case when G = K, for some n > 2. Here we have x(G) = n — 1 and
k(G — e) = n — 2, which satisfies the claim. Thus, going forward, we can assume that G is
not a clique.

Now, since G — e is a spanning subgraph of G, Problem 2 implies that x(G) > k(G — e).

For the reverse inequality, since G is not a clique, certainly G — e is also not a clique. Thus
let U be a minimum vertex-cut of G — e, so |U| = k(G —e). Since U is a vertex-cut of G — e,
this means that we can partition V((G —e) —U) = AU B with A, B non-empty such that no
edge of (G —e) — U crosses between A and B.

If G—U is disconnected, then U is a vertex-cut of G and so k(G—e) = |U| > k(G) > k(G)—1.
Thus, suppose that G — U is connected. Since V(G — e) = V(G), the sets A, B are also a
partition of V(G — U) into non-empty parts, so since G — U is connected, then there is some
edge of G — U which crosses between A and B. The only option here is the edge e. Now,



without loss of generality, we may suppose that |A| > |B|. If we were to have |A| = 1, then
we would have k(G — e) = |U| =n — 2. Since k(G) < n — 1 always, certainly we would have
k(G —e) > k(G) — 1. Thus, we may suppose that |A| > 2. Let a be any vertex of A which
is an end-point of e, which is possible since |A| > 2 and e has exactly one end-point in A.
Then G — (U U {a}) is disconnected since V(G — (U U{a})) = (A\ {a}) U B, both A\ {a}, B
are non-empty and there is no edge between A and B. Thus, k(G) < |[UU{a}| =|U|+1 =
K(G—e)+1 = k(G —e)>k(G)—1

O]

Solution. [#2]

1. Since G — e is a spanning subgraph of G, Problem 2 implies that \(G) > A(G — e), thus we
need only prove that A(G —e) > A\(G) — 1.

Fix any u # v € V(G) = V(G — e). Menger’s theorem for edge-connectivity tells us that G
contains at least \(G) many edge-disjoint u-v paths. Since they’re edge-disjoint, at most one
of them uses the edge e and so G — e contains at least A(G) — 1 many edge-disjoint u-v paths.
Thus, Menger’s theorem for edge-connectivity implies that A\(G — e) > A\(G) — 1.

2. Technically, I shouldn’t allow the following proof since we relied on this fact in order to prove
Menger’s theorem... But I'll allow it just this once.

Since G — e is a spanning subgraph of G, Problem 2 implies that x(G) > k(G — e); thus we
need only prove that k(G —e) > k(G) — 1.

Fix any u # v € V(G) = V(G — e). Menger’s theorem for vertex-connectivity tells us that G
contains at least £(G) many internally-disjoint u-v paths. Certainly internally-disjoint paths
are also edge-disjoint and so at most one of them uses the edge e which implies that G — e
contains at least k(G) — 1 many internally-disjoint u-v paths. Thus, Menger’s theorem for
vertex-connectivity yields x(G —e) > k(G) — 1.

O]

Problem 4 (1 pts). For each non-negative integer k, find an example of a graph G with k(G) =
A(G) =1, yet there is some vertex v € V(G) such that k(G —v) = A\(G —v) = k.
That is to say, the natural analogue of Problem 3 fails when deleting vertices instead of edges.

Solution. Let G be a copy of K1 with an extra leaf attached to one of the vertices. Formally, G
has vertex-set V(G) = {u1,...,upt1,v} where G[{uy,...,ug+1}] = Ki+1 and the unique neighbor
of v is u3. Now, G is connected and is not a copy of K7 and so A(G) > k(G) > 1. Additionally, ujv
is a cut-edge of G since v is an isolated vertex of G — ujv; hence 1 > A(G) > k(G). In conclusion,

AMG) =k(G)=1.
Now, consider G — v, which is a copy of Kjy1. Thus, k(G —v) = k(Kg+1) = k and \(G —v) =
AN Kpg1) = k. O

Problem 5 (2 pts). Let G be a graph. The kth power of G is the graph G* which has the same
vertex-set as G and uv € E(G*) iff dg(u,v) < k.

Prove that if G is a connected graph on at least k + 1 vertices, then G¥ is k-connected.

(You don’t have to turn this is, but you should convince yourself that it’s true: G* is a clique
if and only if diam(G) < k.)



Solution. [#1] Set V = V(G) = V(G*).

Suppose that G has n vertices (n > k + 1 by assumption). If G* is a clique, then we have
k(G¥)=n—1> (k+1)— 1=k and so G* is k-connected as desired. Thus, we may suppose that
G* is not a clique.

Thus, suppose that U C V is a vertex-cut of G*; we must show that |U| > k, so suppose for
the sake of contradiction that |U| < k — 1. Since U is a vertex-cut of G¥ we know that G* — U is
disconnected; thus we may partition V(G* —U) = V \ U = A LI B with A, B non-empty such that
there are no edges of G¥ — U crossing between A and B. Now, G is connected, so there is an a-b
path in G for all a € A and b € B. Consider a pair a € A, b € B such that dg(a,b) is minimum.
Let (a = vg,...,vs = b) be a a-b geodesic in G. If s < k, then dg(a,b) < k and so ab € E(GF)
(a contradiction); thus we may suppose that s > k + 1. Thus, [{vi,...,vs_1}| =s—1>k > |U|.
Therefore, there is some ¢ € [s — 1] such that v; ¢ U: thus, either v; € A or v; € B. In the former
case, v; € A has dg(v;,b) = s —1i < s = dg(a,b); contradiction. In the latter case, v; € B has
da(a,vi) =i < s =dg(a,b); contradiction. O

Solution. [#2] We seek to apply Menger’s theorem, so we must prove that there are at least k
internally-disjoint paths between any pair of distinct vertices in G*.
We begin with a lemma.

Lemma 1. Suppose that G is connected and has at least n vertices. If G1 is any connected subgraph
of G with at most n vertices, then we can find another connected subgraph Go of G with exactly n
vertices such that Gy is a subgraph of Gs.

Proof. Suppose that |V(G1)| = s < n; we prove the claim by induction on n — s.

As a base-case, suppose that n — s =0, so s = n and so we can simply take G, = G.

Now suppose that n —s > 1, s0 1 < s < n—1. Then V(G;) and V(G) \ V(G1) are both
non-empty and partition V(G). Since G is connected, there must be some edge uv € E(G) with
u € V(G1) and v € V(G) \ V(G1). Let G} be the graph formed by appending the edge uv to
G1. Certainly GY is still a subgraph of G and G is a subgraph of G). Furthermore, since G}
is connected, certainly G is connected. Notice that |[V(G5)| = s+ 1 < n and so the induction
hypothesis guarantees that there is a connected subgraph Gs of G with exactly n vertices such that
G, is a subgraph of Ga. Of course, G is also a subgraph of this Gs. 0

With that out of the way, we can find our desired paths. Fix any u # v € V(G); we need to
show that there are at least k internally-disjoint paths between u and v in G¥. We break into cases
depending on dg(u,v) (which we know is finite since G is connected).

Case 1: dg(u,v) < k. Let (u = vp,...,vs = v) be a u-v geodesic in G, so s < k. This path
is a connected, (s 4 1)-vertex connected subgraph of G, so, since G has at least k + 1 vertices by
assumption, Lemma 1 guarantees that we can find a connected, (k + 1)-vertex subgraph G of G
which contains this path. Since G3 is connected and has k+1 vertices, we know that diam(Gs) < k.
In particular, for any z,y € V(G2), we have dg,(z,y) < k and so xy € E(G%). In particular,
G’Q“ = Kg41. Since Kj41 is k-connected, we can find k internally-disjoint u-v paths in Gé’. Finally,
certainly G% is a subgraph of G* and so we have succeeded in finding our k internally-disjoint u-v
paths.

Case 2: dg(u,v) > k. Again, let (u = vy, ...,vs = v) be a u-v geodesic in G, so s > k. Since this
is a geodesic, we know that dg(v;,v;) = |i — j| for all 4,5 € {0,...,s}. In particular, v;v; € E(G¥)
whenever ¢ # j and |i — j| < k. Since s > k, we can write s = gk + r where ¢ is a positive integer



and r € [k]. For each i € [k], define

P — (U = V0, Vi, Vgt - - - » Ughtis Us = V) ifi <,
(2 . .
(U = V0, Vi, Vit - - V(g—1)kpir Vs = ¥)  if i > 7.
By the earlier comment, each of P, ..., P, are u-v paths in G* since all consecutive indices in each

of them differ by at most k. Furthermore, since residue classes modulo k are disjoint, these are k
internally-disjoint u-v paths in G* as needed. O



