
MATH 314 HW #7 Solutions Mar 22

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw7.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

Problem 1 (2pts). For infinitely many integers n, construct a graph G with the following proper-
ties:

• G is connected and has n vertices, and

• G is not a tree, and

• Every v ∈ V (G) which is not a leaf of G is a cut-vertex of G.

“For infinitely many integers n...” means the following: Pick your favorite infinite subset A ⊆ N
and, for each n ∈ A, build the desired graph for that n. For instance, maybe you pick A to be the
set of even naturals, or maybe you pick A to be the set of integers of the form 2k, or maybe you

pick A to be the set of all primes larger than 100100
100100

, etc. As long as A is infinite, you’re fine.

Solution. There are tons of examples; here’s just one such example which is easy to describe. Fix
any even integer n ≥ 6 and set m = n/2 so m ≥ 3 is an integer. Consider building the graph G by
attaching a unique leaf to each vertex of Cm. In particular, G has vertex-set {v1, . . . , vm, u1, . . . , um}
where G[{v1, . . . , vm}] is a copy of Cm and, for each i ∈ [m], the unique neighbor of ui is vi. Now, G
has 2m = n many vertices and is connected by construction. Also, G is not a tree since it contains
an m-cycle. Now, observe that each ui is a leaf of G since the only neighbor of ui is vi. On the
other hand, deg vi = 3 for all i; that is, the non-leaves of G are v1, . . . , vm. Now, for any i ∈ [m],
observe that ui is an isolated vertex in G − vi; thus G − vi is not connected. Hence G has the
property that every non-leaf is a cut-vertex as desired.

Problem 2 (1 + 1 pts). Let G be a graph and suppose that H is any spanning subgraph of G.

1. Prove that λ(G) ≥ λ(H).

2. Prove that κ(G) ≥ κ(H).

Solution. [#1]

1. If G ∼= K1, then also H ∼= K1. Thus, λ(G) = λ(H) = 0.

Otherwise, let S ⊆ E(G) be a minimum edge-cut of G. Since G− S is disconnected, we can
partition V (G) = A ⊔ B with A,B non-empty so that no edge of G − S crosses between A
and B. Now, V (G) = V (H) since H is a spanning subgraph of G, and so A,B also form a
partition of V (H) into non-empty pieces. Set S′ = S ∩E(H). Since E(H − S′) ⊆ E(G− S),
we know that no edge of H − S′ crosses between A and B. Thus S′ is an edge-cut of H and
so λ(H) ≤ |S′| ≤ |S| = λ(G) as desired.

2. If G ∼= Kn, then κ(G) = n − 1. Also, H has V (H) = V (G) and so κ(H) ≤ n − 1 as well.
Thus, going forward, we may suppose that G is not a clique.
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Thus, let U ⊆ V (G) be a minimum vertex-cut of G. Since G − U is disconnected, we can
partition V (G) \ U = A ⊔B with A,B non-empty so that no edge of G− U crosses between
A and B. Now, V (G) = V (H) since H is a spanning subgraph of G and so A,B also form
a partition of V (H) − U into non-empty pieces. Thus, U is also a vertex-cut of H and so
κ(H) ≤ |U | = κ(G).

Solution. [#2]

1. Fix any u ̸= v ∈ V (H) = V (G) (spanning subgraph). Menger’s theorem for edge-connectivity
tells us that H contains at least λ(H) many edge-disjoint u-v paths. Since H is a subgraph
of G, these paths also exist in G and so G contains at least λ(H) many edge-disjoint u-v
paths as well. Thus, since V (H) = V (G), Menger’s theorem for edge-connectivity tells us
that λ(G) ≥ λ(H).

2. Fix any u ̸= v ∈ V (H) = V (G) (spanning subgraph). Menger’s theorem for vertex-
connectivity tells us that H contains at least κ(H) many internally-disjoint u-v paths. Since
H is a subgraph of G, these paths also exist in G and so G contains at least κ(H) many
edge-disjoint u-v paths as well. Thus, since V (H) = V (G), Menger’s theorem for vertex-
connectivity tells us that κ(G) ≥ κ(H).

Problem 3 (1 + 2 pts). Let G = (V,E) be a graph with at least one edge and fix any e ∈ E.

1. Prove that λ(G) ≥ λ(G− e) ≥ λ(G)− 1.

2. Prove that κ(G) ≥ κ(G− e) ≥ κ(G)− 1.

Solution. [#1]

1. Since G− e is a spanning subgraph of G, Problem 2 implies that λ(G) ≥ λ(G− e).

In this case, we don’t need to worry about K1 since it doesn’t have any edges. So let S be
a minimum edge-cut of G − e, so |S| = λ(G − e). Then S ∪ {e} is an edge-cut of G and so
λ(G) ≤ |S|+ 1 = λ(G− e) + 1 =⇒ λ(G− e) ≥ λ(G)− 1.

2. We consider first the case when G ∼= Kn for some n ≥ 2. Here we have κ(G) = n − 1 and
κ(G − e) = n − 2, which satisfies the claim. Thus, going forward, we can assume that G is
not a clique.

Now, since G− e is a spanning subgraph of G, Problem 2 implies that κ(G) ≥ κ(G− e).

For the reverse inequality, since G is not a clique, certainly G − e is also not a clique. Thus
let U be a minimum vertex-cut of G− e, so |U | = κ(G− e). Since U is a vertex-cut of G− e,
this means that we can partition V ((G− e)−U) = A⊔B with A,B non-empty such that no
edge of (G− e)− U crosses between A and B.

If G−U is disconnected, then U is a vertex-cut of G and so κ(G−e) = |U | ≥ κ(G) ≥ κ(G)−1.
Thus, suppose that G − U is connected. Since V (G − e) = V (G), the sets A,B are also a
partition of V (G−U) into non-empty parts, so since G−U is connected, then there is some
edge of G − U which crosses between A and B. The only option here is the edge e. Now,



without loss of generality, we may suppose that |A| ≥ |B|. If we were to have |A| = 1, then
we would have κ(G− e) = |U | = n− 2. Since κ(G) ≤ n− 1 always, certainly we would have
κ(G − e) ≥ κ(G) − 1. Thus, we may suppose that |A| ≥ 2. Let a be any vertex of A which
is an end-point of e, which is possible since |A| ≥ 2 and e has exactly one end-point in A.
Then G− (U ∪ {a}) is disconnected since V (G− (U ∪ {a})) = (A \ {a})⊔B, both A \ {a}, B
are non-empty and there is no edge between A and B. Thus, κ(G) ≤ |U ∪ {a}| = |U |+ 1 =
κ(G− e) + 1 =⇒ κ(G− e) ≥ κ(G)− 1.

Solution. [#2]

1. Since G − e is a spanning subgraph of G, Problem 2 implies that λ(G) ≥ λ(G − e), thus we
need only prove that λ(G− e) ≥ λ(G)− 1.

Fix any u ̸= v ∈ V (G) = V (G − e). Menger’s theorem for edge-connectivity tells us that G
contains at least λ(G) many edge-disjoint u-v paths. Since they’re edge-disjoint, at most one
of them uses the edge e and so G− e contains at least λ(G)−1 many edge-disjoint u-v paths.
Thus, Menger’s theorem for edge-connectivity implies that λ(G− e) ≥ λ(G)− 1.

2. Technically, I shouldn’t allow the following proof since we relied on this fact in order to prove
Menger’s theorem... But I’ll allow it just this once.

Since G − e is a spanning subgraph of G, Problem 2 implies that κ(G) ≥ κ(G − e); thus we
need only prove that κ(G− e) ≥ κ(G)− 1.

Fix any u ̸= v ∈ V (G) = V (G− e). Menger’s theorem for vertex-connectivity tells us that G
contains at least κ(G) many internally-disjoint u-v paths. Certainly internally-disjoint paths
are also edge-disjoint and so at most one of them uses the edge e which implies that G − e
contains at least κ(G) − 1 many internally-disjoint u-v paths. Thus, Menger’s theorem for
vertex-connectivity yields κ(G− e) ≥ κ(G)− 1.

Problem 4 (1 pts). For each non-negative integer k, find an example of a graph G with κ(G) =
λ(G) = 1, yet there is some vertex v ∈ V (G) such that κ(G− v) = λ(G− v) = k.

That is to say, the natural analogue of Problem 3 fails when deleting vertices instead of edges.

Solution. Let G be a copy of Kk+1 with an extra leaf attached to one of the vertices. Formally, G
has vertex-set V (G) = {u1, . . . , uk+1, v} where G[{u1, . . . , uk+1}] ∼= Kk+1 and the unique neighbor
of v is u1. Now, G is connected and is not a copy of K1 and so λ(G) ≥ κ(G) ≥ 1. Additionally, u1v
is a cut-edge of G since v is an isolated vertex of G− u1v; hence 1 ≥ λ(G) ≥ κ(G). In conclusion,
λ(G) = κ(G) = 1.

Now, consider G− v, which is a copy of Kk+1. Thus, κ(G− v) = κ(Kk+1) = k and λ(G− v) =
λ(Kk+1) = k.

Problem 5 (2 pts). Let G be a graph. The kth power of G is the graph Gk which has the same
vertex-set as G and uv ∈ E(Gk) iff dG(u, v) ≤ k.

Prove that if G is a connected graph on at least k + 1 vertices, then Gk is k-connected.
(You don’t have to turn this is, but you should convince yourself that it’s true: Gk is a clique

if and only if diam(G) ≤ k.)



Solution. [#1] Set V = V (G) = V (Gk).
Suppose that G has n vertices (n ≥ k + 1 by assumption). If Gk is a clique, then we have

κ(Gk) = n− 1 ≥ (k + 1)− 1 = k and so Gk is k-connected as desired. Thus, we may suppose that
Gk is not a clique.

Thus, suppose that U ⊆ V is a vertex-cut of Gk; we must show that |U | ≥ k, so suppose for
the sake of contradiction that |U | ≤ k − 1. Since U is a vertex-cut of Gk we know that Gk − U is
disconnected; thus we may partition V (Gk − U) = V \ U = A ⊔B with A,B non-empty such that
there are no edges of Gk − U crossing between A and B. Now, G is connected, so there is an a-b
path in G for all a ∈ A and b ∈ B. Consider a pair a ∈ A, b ∈ B such that dG(a, b) is minimum.
Let (a = v0, . . . , vs = b) be a a-b geodesic in G. If s ≤ k, then dG(a, b) ≤ k and so ab ∈ E(Gk)
(a contradiction); thus we may suppose that s ≥ k + 1. Thus, |{v1, . . . , vs−1}| = s − 1 ≥ k > |U |.
Therefore, there is some i ∈ [s− 1] such that vi /∈ U : thus, either vi ∈ A or vi ∈ B. In the former
case, vi ∈ A has dG(vi, b) = s − i < s = dG(a, b); contradiction. In the latter case, vi ∈ B has
dG(a, vi) = i < s = dG(a, b); contradiction.

Solution. [#2] We seek to apply Menger’s theorem, so we must prove that there are at least k
internally-disjoint paths between any pair of distinct vertices in Gk.

We begin with a lemma.

Lemma 1. Suppose that G is connected and has at least n vertices. If G1 is any connected subgraph
of G with at most n vertices, then we can find another connected subgraph G2 of G with exactly n
vertices such that G1 is a subgraph of G2.

Proof. Suppose that |V (G1)| = s ≤ n; we prove the claim by induction on n− s.
As a base-case, suppose that n− s = 0, so s = n and so we can simply take G2 = G1.
Now suppose that n − s ≥ 1, so 1 ≤ s ≤ n − 1. Then V (G1) and V (G) \ V (G1) are both

non-empty and partition V (G). Since G is connected, there must be some edge uv ∈ E(G) with
u ∈ V (G1) and v ∈ V (G) \ V (G1). Let G′

2 be the graph formed by appending the edge uv to
G1. Certainly G′

2 is still a subgraph of G and G1 is a subgraph of G′
2. Furthermore, since G′

1

is connected, certainly G′
2 is connected. Notice that |V (G′

2)| = s + 1 ≤ n and so the induction
hypothesis guarantees that there is a connected subgraph G2 of G with exactly n vertices such that
G′

2 is a subgraph of G2. Of course, G1 is also a subgraph of this G2.

With that out of the way, we can find our desired paths. Fix any u ̸= v ∈ V (G); we need to
show that there are at least k internally-disjoint paths between u and v in Gk. We break into cases
depending on dG(u, v) (which we know is finite since G is connected).

Case 1: dG(u, v) ≤ k. Let (u = v0, . . . , vs = v) be a u-v geodesic in G, so s ≤ k. This path
is a connected, (s + 1)-vertex connected subgraph of G, so, since G has at least k + 1 vertices by
assumption, Lemma 1 guarantees that we can find a connected, (k + 1)-vertex subgraph G2 of G
which contains this path. Since G2 is connected and has k+1 vertices, we know that diam(G2) ≤ k.
In particular, for any x, y ∈ V (G2), we have dG2(x, y) ≤ k and so xy ∈ E(Gk

2). In particular,
Gk

2
∼= Kk+1. Since Kk+1 is k-connected, we can find k internally-disjoint u-v paths in Gk

2. Finally,
certainly Gk

2 is a subgraph of Gk and so we have succeeded in finding our k internally-disjoint u-v
paths.

Case 2: dG(u, v) > k. Again, let (u = v0, . . . , vs = v) be a u-v geodesic in G, so s > k. Since this
is a geodesic, we know that dG(vi, vj) = |i− j| for all i, j ∈ {0, . . . , s}. In particular, vivj ∈ E(Gk)
whenever i ̸= j and |i− j| ≤ k. Since s > k, we can write s = qk + r where q is a positive integer



and r ∈ [k]. For each i ∈ [k], define

Pi =

{
(u = v0, vi, vk+i, . . . , vqk+i, vs = v) if i < r,

(u = v0, vi, vk+i, . . . , v(q−1)k+i, vs = v) if i ≥ r.

By the earlier comment, each of P1, . . . , Pk are u-v paths in Gk since all consecutive indices in each
of them differ by at most k. Furthermore, since residue classes modulo k are disjoint, these are k
internally-disjoint u-v paths in Gk as needed.


