MATH 314 HW #8 Solutions Mar 29

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw8.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to
use the result from any problem on this (or previous) assignment as a part of your solution to a different
problem even if you have not solved the former problem.

We say that a graph is even-reqular if every vertex has even degree, and we say that a graph is
odd-reqular if every vertex has odd degree.

Problem 1 (2pts). In the second week of class (01-27), we used the handshaking lemma to prove
the following fact: If G is a connected even-regular graph, then G has no bridges.
Give an alternative proof of this fact using what we now know about Fulerian circuits.

Solution. Note that if G has no edges, then certainly G has no bridges, so we may suppose G
has at least one edge.

Fix any edge e € FE(G); we must show that G — e is also connected. Since G is connected
and even-regular, we know that G contains an Eulerian circuit; label the vertices of this circuit as
C = (vo,v2,...,u;m =1vg) (G is simple, so we can get away with this). Since the edge e is traversed
exactly once in this circuit, we may suppose, without loss of generality, that e = v,_1v,,. Now,
consider the walk (v, ve, ..., v,—1), which still sees all vertices of G since v, = vy. Since this walk
sees all vertices of G — e, we conclude that G — e is connected. O

Problem 2 (2 + 2 pts). A digraph D is said to be oriented if (u,v) € E(D) = (v,u) ¢ E(D),
i.e. D has no directed cycles of length 1 or 2.

For a digraph D with no loops, the underlying simple graph of D is the (simple) graph G with
V(G) = V(D) and uv € E(G) if and only if (u,v) € E(D) or (v,u) € E(D). In other words, the
underlying simple graph is formed by simply forgetting about the directions of the edges.

For a (simple) graph G, an orientation of G is an oriented digraph whose underlying simple
graph is G. In other words, an orientation of G is formed by assigning a direction to each edge of
G. Note that a graph generally has many orientations.

1. Prove that if G is a (simple) even-regular graph, then G has an orientation wherein deg™ v =
deg™ v for all vertices v.

2. Prove that if G is any (simple) graph, then G has an orientation wherein |deg®™ v—deg™ v| < 1
for all vertices v.

You are free use part 1 as a black-box even if you haven’t proved it.

Solution.

1. To begin, we may suppose that G is connected since we could apply the result to each
individual connected component of G otherwise.

Thus, G is connected and even-regular, so G contains an Eulerian circuit; label the vertices
of this circuit as C' = (vg, va, ...,V = v9). From C, we build the desired orientation D —
informally, we orient the edges of G based on how they are traversed in C'. Formally, for an
edge e € E(G), we know that there is a unique ¢ € {0,...,m — 1} such that e = v;v;11; add
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the directed edge (v;,vi+1) to D. Observe that D is an orientation of G since each edge is
traversed exactly once in C' and so each edge was given a unique direction.

We now show that D has the property that degtv = deg” v for all v € V(D) = V(G)
— this is essentially identical to what we did in class to prove that Eulerian graphs have
all degrees even. Fix any v € V(D) and define I = {i € {0,...,m — 1} : v;y1 = v} and
O =1{ie€{0,....m —1} : vi_1 = v} where all indices here are computed modulo m. By
construction, deg” v = |I| and deg™ v = |O|. Furthermore, |I| = |O| as witnessed by the
bijection ¢ — i 4+ 2 (mod m), and so D is indeed our desired orientation.

2. Let U C V(G) be the set of all odd-degree vertices of G and form a new graph G’ by
introducing a new vertex x to G which is adjacent to all vertices in U. Observe that if
u € U, then degr u = degg u + 1, which is even since degq u is odd. Also, degqy z = |U],
which is even thanks to the handshaking lemma (even number of odd degrees). Finally, if
v € V(G)\ U, then deg v = degg v, which is even. Therefore, G’ is even-regular.

We can thus apply part 1 to G’ to find an orientation D’ such that degf, v = degp, v for all
veV(G) =V(G)U{x}.

Now, consider the digraph D = D’ — x, which is an orientation of G. If v € V(G) \ U, then
degf) v = deg%, v and so dngDr v =degpv.

On the other hand, consider any u € U. If (z,u) € E(D’), then deg,u = deg,, u — 1 and
deghu = deg}, u. If (u,z) € E(D’), then degfu = deg}, u — 1 and deg,u = degp, u. In
either case, we have |degf u — degp, u| = 1.

O]

Problem 3 (2 + 2 pts). For graphs G, H, the Cartesian product of G and H is the graph GO H
which has vertex set V(G) x V(H) and {(u1,v1), (ug,v2)} € E(GOH) if and only if either u; = us
and v1vy € E(H) or ujus € E(G) and vy = va.!

Suppose that G and H are any graphs.

1. Prove that G O H is connected if and only if both G and H are connected.

2. Prove that G [0 H is Eulerian if and only if both G and H are connected and also:
(a) Both G and H are even-regular, or
(b) Both G and H are odd-regular.

You are free to use part 1 as a black-box even if you haven’t proved it.

Solution.

1. («) Consider any (u1,v1), (ug,v2) € V(GO H). Since G is connected, there is a uj-uz path
in G, call it (u; = wy,...,wx = uz). Then, ((wl,vl),(wg,vl),...,(wk,vl)) is a (u1,v1)-
(ug,v1) path in GO H. Similarly, H is connected, so there is a vi-ve path in H, call it
(v1 = 21,...,2¢ = v2). Then ((ug,zl),...,(uQ,zg)) is a (ug,v1)-(u2,vs2) path in GO H. By
concatenating these two paths, we obtain a (u1,v1)-(u2,v2) walk and thus know that G O H
is connected.

IN.b. We like the notation [ here since Ko (0 Ko & C4, which looks like a 0. Note that your book uses X in place
of [J; this is okay, but not desirable since generally x denotes a different graph product known as the categorical
product, in which K2 x K3 & K5 Ll K2, which can be made to look like an Xx.



(=) We prove the contrapositive, so we must show that if G or H is disconnected, then GO H
is disconnected. Note that GO H = H G as witnessed by the isomorphism (u,v) — (v, u),
so, without loss of generality, we may suppose that G is disconnected.

Since G is disconnected we can partition V(G) = AU B with A, B non-empty and no edge of
G crosses between A and B. Set A’ = AxV(H)and B'=BxV(H),so V(GOH)=AUB
with A’, B" non-empty. We claim that there is no edge of G [0 H which crosses between A’
and B’, which will imply that GO H is disconnected. Consider any (a,v1) € A’ = Ax V(H)
and (b,v9) € B’ = B x V(H); we must show that (a,v1) is not adjacent to (b,v2) in GO H.
Note that a € A and b € B and so a # b since A and B are disjoint; thus the only way that
{(a,v1),(b,ve)} € E(GOH) is if v1 = vy and ab € E(G), which is impossible since G has no
edges crossing between A and B.

. To begin, for any (u,v) € V(GO H), we find that
Neop(u,v) = {(v,v) : v € Ng(u)} U {(u,v') : v" € Ng(v)}.

Thus, degqny (u,v) = degg u + degy v, which we will use throughout.

(=) Since G and H are connected, we know that G 0 H is connected thanks to part 1; thus
to show that G [0 H is Eulerian, we must show that every vertex has even degree. Consider
any (u,v) € V(GOH); we know that degoqy(u, v) = degg u+degy v. By assumption, either
G and H are both even-regular or both G and H are odd-regular, and so either deg, v and
degy v are both even or are both odd. In either case degory(u,v) is even, as needed.

(<) Since G O H is Eulerian is connected, we know that G [0 H is connected; hence both G
and H are connected thanks to part 1. Thus, we must show that either G and H are both
even-regular or that both are odd-regular.

Now, since G O H is Eulerian, we know that deggry(u,v) is even for all (u,v) € V(GO H).
In particular, deggu + degy v is even for all v € V(G) and v € V(H). We conclude that
degsu and degy v have the same parity for every v € V(G) and every v € V(H). Thus,
either deg, u and degy v are even for all v € V(G) and v € V(H) or degg u and degy v are
odd for all v € V(G) and v € V(H). In other words, either both G and H are even-regular,
or both are odd-regular.
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