
MATH 314 HW #8 Solutions Mar 29

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw8.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

We say that a graph is even-regular if every vertex has even degree, and we say that a graph is
odd-regular if every vertex has odd degree.

Problem 1 (2pts). In the second week of class (01-27), we used the handshaking lemma to prove
the following fact: If G is a connected even-regular graph, then G has no bridges.

Give an alternative proof of this fact using what we now know about Eulerian circuits.

Solution. Note that if G has no edges, then certainly G has no bridges, so we may suppose G
has at least one edge.

Fix any edge e ∈ E(G); we must show that G − e is also connected. Since G is connected
and even-regular, we know that G contains an Eulerian circuit; label the vertices of this circuit as
C = (v0, v2, . . . , vm = v0) (G is simple, so we can get away with this). Since the edge e is traversed
exactly once in this circuit, we may suppose, without loss of generality, that e = vm−1vm. Now,
consider the walk (v0, v2, . . . , vm−1), which still sees all vertices of G since vm = v0. Since this walk
sees all vertices of G− e, we conclude that G− e is connected.

Problem 2 (2 + 2 pts). A digraph D is said to be oriented if (u, v) ∈ E(D) =⇒ (v, u) /∈ E(D),
i.e. D has no directed cycles of length 1 or 2.

For a digraph D with no loops, the underlying simple graph of D is the (simple) graph G with
V (G) = V (D) and uv ∈ E(G) if and only if (u, v) ∈ E(D) or (v, u) ∈ E(D). In other words, the
underlying simple graph is formed by simply forgetting about the directions of the edges.

For a (simple) graph G, an orientation of G is an oriented digraph whose underlying simple
graph is G. In other words, an orientation of G is formed by assigning a direction to each edge of
G. Note that a graph generally has many orientations.

1. Prove that if G is a (simple) even-regular graph, then G has an orientation wherein deg+ v =
deg− v for all vertices v.

2. Prove that if G is any (simple) graph, then G has an orientation wherein |deg+ v−deg− v| ≤ 1
for all vertices v.

You are free use part 1 as a black-box even if you haven’t proved it.

Solution.

1. To begin, we may suppose that G is connected since we could apply the result to each
individual connected component of G otherwise.

Thus, G is connected and even-regular, so G contains an Eulerian circuit; label the vertices
of this circuit as C = (v0, v2, . . . , vm = v0). From C, we build the desired orientation D —
informally, we orient the edges of G based on how they are traversed in C. Formally, for an
edge e ∈ E(G), we know that there is a unique i ∈ {0, . . . ,m− 1} such that e = vivi+1; add
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the directed edge (vi, vi+1) to D. Observe that D is an orientation of G since each edge is
traversed exactly once in C and so each edge was given a unique direction.

We now show that D has the property that deg+ v = deg− v for all v ∈ V (D) = V (G)
— this is essentially identical to what we did in class to prove that Eulerian graphs have
all degrees even. Fix any v ∈ V (D) and define I = {i ∈ {0, . . . ,m − 1} : vi+1 = v} and
O = {i ∈ {0, . . . ,m − 1} : vi−1 = v} where all indices here are computed modulo m. By
construction, deg− v = |I| and deg+ v = |O|. Furthermore, |I| = |O| as witnessed by the
bijection i 7→ i+ 2 (mod m), and so D is indeed our desired orientation.

2. Let U ⊆ V (G) be the set of all odd-degree vertices of G and form a new graph G′ by
introducing a new vertex x to G which is adjacent to all vertices in U . Observe that if
u ∈ U , then degG′ u = degG u + 1, which is even since degG u is odd. Also, degG′ x = |U |,
which is even thanks to the handshaking lemma (even number of odd degrees). Finally, if
v ∈ V (G) \ U , then degG′ v = degG v, which is even. Therefore, G′ is even-regular.

We can thus apply part 1 to G′ to find an orientation D′ such that deg+D′ v = deg−D′ v for all
v ∈ V (G′) = V (G) ∪ {x}.
Now, consider the digraph D = D′ − x, which is an orientation of G. If v ∈ V (G) \ U , then
deg±D v = deg±D′ v and so deg+D v = deg−D v.

On the other hand, consider any u ∈ U . If (x, u) ∈ E(D′), then deg−D u = deg−D′ u − 1 and
deg+D u = deg+D′ u. If (u, x) ∈ E(D′), then deg+D u = deg+D′ u − 1 and deg−D u = deg−D′ u. In
either case, we have |deg+D u− deg−D u| = 1.

Problem 3 (2 + 2 pts). For graphs G,H, the Cartesian product of G and H is the graph G□H
which has vertex set V (G)×V (H) and {(u1, v1), (u2, v2)} ∈ E(G□H) if and only if either u1 = u2
and v1v2 ∈ E(H) or u1u2 ∈ E(G) and v1 = v2.

1

Suppose that G and H are any graphs.

1. Prove that G□H is connected if and only if both G and H are connected.

2. Prove that G□H is Eulerian if and only if both G and H are connected and also:

(a) Both G and H are even-regular, or

(b) Both G and H are odd-regular.

You are free to use part 1 as a black-box even if you haven’t proved it.

Solution.

1. (⇐) Consider any (u1, v1), (u2, v2) ∈ V (G□H). Since G is connected, there is a u1-u2 path
in G, call it (u1 = w1, . . . , wk = u2). Then,

(
(w1, v1), (w2, v1), . . . , (wk, v1)

)
is a (u1, v1)-

(u2, v1) path in G □ H. Similarly, H is connected, so there is a v1-v2 path in H, call it
(v1 = z1, . . . , zℓ = v2). Then

(
(u2, z1), . . . , (u2, zℓ)

)
is a (u2, v1)-(u2, v2) path in G □ H. By

concatenating these two paths, we obtain a (u1, v1)-(u2, v2) walk and thus know that G□H
is connected.

1N.b. We like the notation □ here since K2 □K2
∼= C4, which looks like a □. Note that your book uses × in place

of □; this is okay, but not desirable since generally × denotes a different graph product known as the categorical
product, in which K2 ×K2

∼= K2 ⊔K2, which can be made to look like an ×.



(⇒) We prove the contrapositive, so we must show that if G or H is disconnected, then G□H
is disconnected. Note that G□H ∼= H □G as witnessed by the isomorphism (u, v) 7→ (v, u),
so, without loss of generality, we may suppose that G is disconnected.

Since G is disconnected we can partition V (G) = A⊔B with A,B non-empty and no edge of
G crosses between A and B. Set A′ = A×V (H) and B′ = B×V (H), so V (G□H) = A′⊔B′

with A′, B′ non-empty. We claim that there is no edge of G □ H which crosses between A′

and B′, which will imply that G□H is disconnected. Consider any (a, v1) ∈ A′ = A× V (H)
and (b, v2) ∈ B′ = B × V (H); we must show that (a, v1) is not adjacent to (b, v2) in G□H.
Note that a ∈ A and b ∈ B and so a ̸= b since A and B are disjoint; thus the only way that
{(a, v1), (b, v2)} ∈ E(G□H) is if v1 = v2 and ab ∈ E(G), which is impossible since G has no
edges crossing between A and B.

2. To begin, for any (u, v) ∈ V (G□H), we find that

NG□H(u, v) =
{
(u′, v) : u′ ∈ NG(u)

}
⊔
{
(u, v′) : v′ ∈ NH(v)

}
.

Thus, degG□H(u, v) = degG u+ degH v, which we will use throughout.

(⇒) Since G and H are connected, we know that G□H is connected thanks to part 1; thus
to show that G□H is Eulerian, we must show that every vertex has even degree. Consider
any (u, v) ∈ V (G□H); we know that degG□H(u, v) = degG u+degH v. By assumption, either
G and H are both even-regular or both G and H are odd-regular, and so either degG u and
degH v are both even or are both odd. In either case degG□H(u, v) is even, as needed.

(⇐) Since G□H is Eulerian is connected, we know that G□H is connected; hence both G
and H are connected thanks to part 1. Thus, we must show that either G and H are both
even-regular or that both are odd-regular.

Now, since G□H is Eulerian, we know that degG□H(u, v) is even for all (u, v) ∈ V (G□H).
In particular, degG u + degH v is even for all u ∈ V (G) and v ∈ V (H). We conclude that
degG u and degH v have the same parity for every u ∈ V (G) and every v ∈ V (H). Thus,
either degG u and degH v are even for all u ∈ V (G) and v ∈ V (H) or degG u and degH v are
odd for all u ∈ V (G) and v ∈ V (H). In other words, either both G and H are even-regular,
or both are odd-regular.


