
MATH 314 HW #9 Solutions Apr 5

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw9.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to

use the result from any problem on this (or previous) assignment as a part of your solution to a different

problem even if you have not solved the former problem.

Problem 1 (1 + 2 pts). Fix any integer n ≥ 3.

1. Construct an n-vertex graph G with
(
n−1
2

)
+ 1 many edges such that G is not Hamiltonian.

(Note: You must construct such a graph for every n ≥ 3.)

2. Prove that if G is an n-vertex graph with at least
(
n−1
2

)
+2 many edges, then G is Hamiltonian.

Solution.

1. Form G by attaching a leaf to Kn−1. Formally, G has vertex-set V (G) = {v1, . . . , vn−1, u},
where G[{v1, . . . , vn−1}] ∼= Kn−1 and the unique neighbor of u is v1. Since deg u = 1, G
cannot be Hamiltonian since Hamiltonicitity requires minimum degree at least two (though
G does contain a Hamiltonian path). Furthermore, |E(G)| = 1 + |E(G[{v1, . . . , vn−1}])| =
1 + |E(Kn−1)| = 1 +

(
n−1
2

)
as requested.

2. Fix any non-adjacent vertices u, v (if no such pair exists, then we’re done since n ≥ 3). Set
G′ = G−{u, v} (deleting vertices here). Since u and v are non-adjacent, we find that |E(G)| =
|E(G′)| + deg u + deg v. On the other hand, G′ has n − 2 vertices and so |E(G′)| ≤

(
n−2
2

)
.

Putting these together, we have(
n− 1

2

)
+ 2 ≤ |E(G)| = |E(G′)|+ deg u+ deg v ≤

(
n− 2

2

)
+ deg u+ deg v

=⇒ deg u+ deg v ≥
(
n− 1

2

)
+ 2−

(
n− 2

2

)
= n.

Thus, G satisfies Ore’s condition and so G is Hamiltonian.

Problem 2 (0.5 + 0.5 pts). Recall that Kn1,n2,n3 is the complete tripartite graph with parts of
sizes n1, n2, n3.

Fix any positive integer n.

1. Prove that Kn,2n,3n is Hamiltonian.

2. Prove that Kn,2n,3n+1 is not Hamiltonian.

Solution.

1. Call the parts A,B,C where |A| = n, |B| = 2n and |C| = 3n.

We observe that for a ∈ A, b ∈ B, c ∈ C, we have deg a = 5n, deg b = 4n and deg c = 3n.
Thus δ(Kn,2n,3n) ≥ 3n = 1

2 |V (Kn,2n,3n)| and so Dirac’s condition implies that Kn,2n,3n is
Hamiltonian since certainly 6n ≥ 3.
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2. Call the parts A,B,C where |A| = n, |B| = 2n and |C| = 3n+ 1.

Since C is an independent set, we observe that comp(Kn,2n,3n+1 − (A ∪ B)) = |C| = 3n+ 1.
However, |A ∪B| = 3n < 3n+ 1 and so Kn,2n,3n+1 cannot be Hamiltonian.

Problem 3 (2pts). Let G be a graph on n ≥ 4 vertices with the property that N(u) ∪ N(v) ⊇
V (G) \ {u, v} for every u ̸= v ∈ V (G). Prove that G is Hamiltonian.

(Hint: |A ∪B| = |A|+ |B| − |A ∩B| for finite sets A,B.)
(Hint: The problem and first hint suggest attempting a proof similar to our proof of Bondy–

Chvátal, i.e. extending a Hamiltonian path to a Hamiltonian cycle. While such a proof is possible,
it’s more difficult than a more direct proof using only Ore’s condition. This is just my opinion and
maybe you disagree; I just don’t want to lead you down the wrong path.)

Solution. [#1] We verify Ore’s condition. Fix any non-adjacent u ̸= v ∈ V (G) (if there is no
such pair, then we are done since n ≥ 3). We need to show that deg u + deg v ≥ n. Suppose for
the sake of contradiction that deg u+ deg v ≤ n− 1. Now,

n− 2 = |V (G) \ {u, v}| ≤ |N(u) ∪N(v)| = |N(u)|+ |N(v)| − |N(u) ∩N(v)|
= deg u+ deg v − |N(u) ∩N(v)| ≤ n− 1− |N(u) ∩N(v)|,

and so |N(u)∩N(v)| ≤ 1, i.e. u and v have at most one common neighbor. Since n ≥ 4, this implies
that there must be some x ∈ V (G) \ {u, v} with x /∈ N(u) ∩N(v). Without loss of generality, we
may suppose that x /∈ N(v).

Consider the vertices x and u. By assumption, v ∈ N(u) ∪ N(x) since v ∈ V (G) \ {x, u}.
However, v /∈ N(u) since u and v were assumed to not be adjacent and also v /∈ N(x) since
x /∈ N(v). Therefore v /∈ N(u) ∪N(x); a contradiction.

Solution. [#2] We follow the ideas in our proof of Bondy–Chvátal.

First, we show that G has a Hamiltonian path. Indeed, suppose that P = (v1, . . . , vk) is a
maximum-length path in G. Notice that k ≥ 2 since n ≥ 4 and an independent set of size at least
3 cannot possibly satisfy the assumption; in particular v1 ̸= vk.

If k = n then we’re done, so suppose for the sake of contradiction that k < n. Since k < n,
there is some x ∈ V (G) \ V (P ). Since v1 ̸= vk, we thus have x ∈ N(v1) ∪N(vk) by assumption. If
x ∈ N(vk), then (v1, . . . , vk, x) is a strictly longer path than P ; a contradiction. If x ∈ N(v1), then
(x, v1, . . . , vk) is a strictly longer path than P ; a contradiction. Thus, k = n and so G does indeed
have a Hamiltonian path.

Now that we know that G has a Hamiltonian path, let (v1, . . . , vn) be such a path. If also
v1vn ∈ E(G), then we have found a Hamiltonian cycle, so suppose this is not the case.

Observe that n ≥ 4 and so v2, v3 /∈ {v1, vn}. Identically to our proof of Bondy–Chvátal, if
v1v3, v2vn ∈ E(G), then we have found a Hamiltonian cycle, so we show that this is indeed the case
which will conclude the proof. If v1v3 /∈ E(G), then, since v1vn /∈ E(G), we have v1 ∈ V (G)\{v3, vn}
and v1 /∈ N(v3)∪N(vn); a contradiction. Symmetrically, if v2vn /∈ E(G), then, since v1vn /∈ E(G),
we have vn ∈ V (G) \ {v1, v2} and vn /∈ N(v1) ∪N(v2); a contradiction.



Solution. [#3] This is probably the easiest proof, but I didn’t think of it until right before I
posted these solutions (I was distracted by the nice application of Ore’s conditions in the first
solution).

Fix any v ∈ V (G); we claim that deg v ≥ n − 2. If not, then deg v ≤ n − 3 and so |{v} ∪
N(v)| ≤ n − 2. But then we can find x ̸= y ∈ V (G) \ ({v} ∪ N(v)). Now, v ∈ V (G) \ {x, y} yet
x, y /∈ N(v) =⇒ v /∈ N(x) ∪N(y); a contradiction.

Thus, we have δ(G) ≥ n − 2, and also n − 2 ≥ n/2 since n ≥ 4. Therefore δ(G) ≥ n/2 and
n ≥ 3, so G satisfies Dirac’s condition and is thus Hamiltonian.

Problem 4 (2pts). Let G be a graph on n vertices. In class, we showed that α′(G) + β′(G) = n
provided G has no isolated vertices; this exercise exists to establish the natural (and easier to prove)
vertex-version of this fact.

Recall that the independence number of G, denoted by α(G), is the size of a largest independent
set of G. Recall also that the vertex-cover number of G, denoted by β(G), is the size of a smallest
vertex-cover of G.

Prove that α(G) + β(G) = n for any n-vertex graph G.
(Note: You don’t need to know anything about matchings to prove this.)

Solution. We show first that α(G)+β(G) ≤ n. To do so, let A ⊆ V be a maximum independent
set in G, so |A| = α(G). Since A is an independent set, no edge of G can have both end-points in A
and so every edge of G has at least one end-point in V \A. In other words, V \A is a vertex-cover
of G and so β(G) ≤ |V \A| = n− α(G) =⇒ α(G) + β(G) ≤ n.

Next, we show that α(G) + β(G) ≥ n. To do so, let B ⊆ V be a minimum vertex-cover
of G, so |B| = β(G). Since B is a vertex-cover, every edge of G has at least one end-point in B.
Therefore, no edge has both end-points in V \B and so V \B is an independent set in G. Therefore,
α(G) ≥ |V \B| = n− β(G) =⇒ α(G) + β(G) ≥ n.

Problem 5 (2 pts). We have an m× n matrix M ∈ {0, 1}m×n. We refer to the columns and rows
of this matrix as lines (so a line is either one of the m rows or one of the n columns of M). Prove
that the minimum number of lines needed to contain all 1’s of M is precisely the maximum number
of 1’s in M that one can select so that no two of these selected 1’s live in any common line.

Solution. This is just a restatement of Kőnig’s theorem in non-graph-theoretic language.

We build a bipartite graph G with parts A = {a1, . . . , am} and B = {b1, . . . , bn} where aibj ∈
E(G) if and only if Mij = 1. In other words, A corresponds to the rows of M , B corresponds to the
columns of M and edges correspond to the 1’s in M . In particular, the lines of M correspond to all
of V (G) and a line contains a particular 1 if and only if the corresponding vertex is an end-point
of the corresponding edge.

With this correspondence we have:

• A collection of lines which contain all 1’s of M corresponds to a vertex-cover of G. Thus, the
fewest number of lines necessary to contain all 1’s is precisely β(G).

• A collection of 1’s in M with no two in a common line corresponds to a matching in G. Thus,
the maximum number of such 1’s in M is precisely α′(G).

Since G is bipartite, Kőnig tells us that β(G) = α′(G) and so the claim follows.


