MATH 314 HW #9 Solutions Apr 5

These solutions are from https://mathematicaster.org/teaching/graphs2022/sol-hw9.pdf

Unless explicitly requested by a problem, do not include sketches as part of your proof. You are free to
use the result from any problem on this (or previous) assignment as a part of your solution to a different
problem even if you have not solved the former problem.

Problem 1 (1 + 2 pts). Fix any integer n > 3.

1. Construct an n-vertex graph G with (”;1) + 1 many edges such that G is not Hamiltonian.

(Note: You must construct such a graph for every n > 3.)

2. Prove that if G is an n-vertex graph with at least (";1) 42 many edges, then G is Hamiltonian.

Solution.

1. Form G by attaching a leaf to K,,_1. Formally, G has vertex-set V(G) = {v1,...,vp_1,u},
where G[{v1,...,vp-1}] =& K,—1 and the unique neighbor of u is v;. Since degu = 1, G
cannot be Hamiltonian since Hamiltonicitity requires minimum degree at least two (though
G does contain a Hamiltonian path). Furthermore, |[E(G)| = 1+ |E(G[{v1,...,vn—1}])| =
1+ |E(Kp—1)| =1+ (”51) as requested.

2. Fix any non-adjacent vertices u,v (if no such pair exists, then we’re done since n > 3). Set
G’ = G—{u, v} (deleting vertices here). Since u and v are non-adjacent, we find that |[E(G)| =
|E(G")| + degu + degv. On the other hand, G' has n — 2 vertices and so |E(G")| < ("52)
Putting these together, we have

<n;1> +2 < |E(G)| = |E(G")| + degu + degv < <n )

-1 -2
= degu+degv > <n2 >+2—<n2 >:n.

Thus, G satisfies Ore’s condition and so G is Hamiltonian.

) + degu + degv

O

Problem 2 (0.5 + 0.5 pts). Recall that K, 5, n, is the complete tripartite graph with parts of
sizes ni, ng, N3.
Fix any positive integer n.

1. Prove that K, o, 3, is Hamiltonian.

2. Prove that K, 2, 3n+1 is not Hamiltonian.

Solution.

1. Call the parts A, B,C where |A| =n, |B| = 2n and |C| = 3n.

We observe that for a € A,b € B,c € C, we have dega = 5n, degb = 4n and degc = 3n.
Thus 6(Kpon3n) > 3n = %|V(Kn72n,3n)\ and so Dirac’s condition implies that K, 2, 35 is
Hamiltonian since certainly 6n > 3.


https://mathematicaster.org/teaching/graphs2022/sol-hw9.pdf

2. Call the parts A, B, C where |A| =n, |B| =2n and |C| =3n + 1.

Since C' is an independent set, we observe that comp(Ky, 2 3n+1 — (AU B)) = |C| =3n + 1.
However, |AU B| = 3n < 3n+ 1 and so K, 25, 3n+1 cannot be Hamiltonian.

O
Problem 3 (2pts). Let G be a graph on n > 4 vertices with the property that N(u) U N(v) D
V(G)\ {u, v} for every u # v € V(G). Prove that G is Hamiltonian.

(Hint: |[AU B| = |A| + |B| — |A N Bj for finite sets A, B.)
(Hint: The problem and first hint suggest attempting a proof similar to our proof of Bondy—
Chvétal, i.e. extending a Hamiltonian path to a Hamiltonian cycle. While such a proof is possible,

it’s more difficult than a more direct proof using only Ore’s condition. This is just my opinion and
maybe you disagree; I just don’t want to lead you down the wrong path.)

Solution. [#1] We verify Ore’s condition. Fix any non-adjacent v # v € V(G) (if there is no
such pair, then we are done since n > 3). We need to show that degu + degv > n. Suppose for
the sake of contradiction that degu + degv < n — 1. Now,

n—2=|V(G)\{u,v}| <|N(u) UN(@)| = [N(u)| + |N(v)| = |N(u) N N(v)|
=degu+degv — [N(u)NN(v)| <n—1—|N(u)NN(v)|,

and so |[N(u)NN(v)| <1, 1ie. uand v have at most one common neighbor. Since n > 4, this implies
that there must be some z € V(G) \ {u,v} with z ¢ N(u) N N(v). Without loss of generality, we
may suppose that x ¢ N(v).

Consider the vertices  and u. By assumption, v € N(u) U N(z) since v € V(G) \ {z,u}.
However, v ¢ N(u) since u and v were assumed to not be adjacent and also v ¢ N(z) since
x ¢ N(v). Therefore v ¢ N(u)U N(z); a contradiction. O

Solution. [#2] We follow the ideas in our proof of Bondy—Chvétal.

First, we show that G has a Hamiltonian path. Indeed, suppose that P = (v1,...,v;) is a
maximum-length path in G. Notice that & > 2 since n > 4 and an independent set of size at least
3 cannot possibly satisfy the assumption; in particular v; # vg.

If £ = n then we’re done, so suppose for the sake of contradiction that k < n. Since k < n,
there is some = € V(G) \ V(P). Since v; # v, we thus have © € N(v1) U N(vg) by assumption. If
x € N(vg), then (v1,..., v, x) is a strictly longer path than P; a contradiction. If x € N(vp), then
(z,v1,...,vx) is a strictly longer path than P; a contradiction. Thus, K = n and so G does indeed
have a Hamiltonian path.

Now that we know that G has a Hamiltonian path, let (v1,...,v,) be such a path. If also
v1v, € E(G), then we have found a Hamiltonian cycle, so suppose this is not the case.

Observe that n > 4 and so vg,v3 ¢ {v1,v,}. Identically to our proof of Bondy—Chvétal, if
v1v3, VU, € E(G), then we have found a Hamiltonian cycle, so we show that this is indeed the case
which will conclude the proof. If viv3 ¢ E(G), then, since viv, ¢ E(G), we have v; € V(G)\{vs, vy}
and v1 ¢ N(v3) U N(vy); a contradiction. Symmetrically, if vov,, ¢ E(G), then, since viv, ¢ E(G),
we have v, € V(G) \ {v1,v2} and v, ¢ N(v1) U N(v2); a contradiction. O



Solution. [#3] This is probably the easiest proof, but I didn’t think of it until right before I
posted these solutions (I was distracted by the nice application of Ore’s conditions in the first
solution).

Fix any v € V(G); we claim that degv > n — 2. If not, then degv < n — 3 and so |[{v} U
N(w)| < n—2. But then we can find x # y € V(G) \ ({v} UN(v)). Now, v € V(G) \ {z,y} yet
z,y ¢ N(v) = v ¢ N(z)U N(y); a contradiction.

Thus, we have §(G) > n — 2, and also n — 2 > n/2 since n > 4. Therefore 6(G) > n/2 and
n > 3, so G satisfies Dirac’s condition and is thus Hamiltonian. ]

Problem 4 (2pts). Let G be a graph on n vertices. In class, we showed that o/ (G) + 8/(G) = n
provided G has no isolated vertices; this exercise exists to establish the natural (and easier to prove)
vertex-version of this fact.

Recall that the independence number of G, denoted by a(G), is the size of a largest independent
set of G. Recall also that the vertex-cover number of G, denoted by 5(G), is the size of a smallest
vertex-cover of G.

Prove that a(G) + B(G) = n for any n-vertex graph G.

(Note: You don’t need to know anything about matchings to prove this.)

Solution. We show first that a(G) + (G) < n. To do so, let A C V' be a maximum independent
set in G, so |A| = a(G). Since A is an independent set, no edge of G can have both end-points in A
and so every edge of G has at least one end-point in V'\ A. In other words, V'\ A is a vertex-cover
of Gand so B(G) < |[V\ Al =n—a(G) = aG)+ B(G) <n.

Next, we show that «(G) + B(G) > n. To do so, let B C V be a minimum vertex-cover
of G, so |B| = B(G). Since B is a vertex-cover, every edge of G has at least one end-point in B.
Therefore, no edge has both end-points in V'\ B and so V'\ B is an independent set in G. Therefore,
a(G) > |V\B|=n-8(G) = «aG)+ B(G) >n. O

Problem 5 (2 pts). We have an m x n matrix M € {0,1}"*". We refer to the columns and rows
of this matrix as lines (so a line is either one of the m rows or one of the n columns of M). Prove
that the minimum number of lines needed to contain all 1’s of M is precisely the maximum number
of 1’s in M that one can select so that no two of these selected 1’s live in any common line.

Solution. This is just a restatement of Kénig’s theorem in non-graph-theoretic language.

We build a bipartite graph G with parts A = {a1,...,an} and B = {b1,...,b,} where a;b; €
E(G) if and only if M;; = 1. In other words, A corresponds to the rows of M, B corresponds to the
columns of M and edges correspond to the 1’s in M. In particular, the lines of M correspond to all
of V(G) and a line contains a particular 1 if and only if the corresponding vertex is an end-point
of the corresponding edge.

With this correspondence we have:

e A collection of lines which contain all 1’s of M corresponds to a vertex-cover of G. Thus, the
fewest number of lines necessary to contain all 1’s is precisely 5(G).

e A collection of 1’s in M with no two in a common line corresponds to a matching in G. Thus,
the maximum number of such 1’s in M is precisely o/(G).

Since G is bipartite, Kénig tells us that 8(G) = o/(G) and so the claim follows. O



