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1. Introduction

Consider two sequences of length with letters from a sizek alphabetX, say u
andv. The longest common subsequence (LCS) problem is that of finding the largest
value L for which there are Xij <io < - <ip<nand I<j1 < jo < --- < jr <n
such thaty;, =v;, forallr=1,2,..., L.

The LCS problem has emerged more or less independently in several remarkably
disparate areas, including the comparison of versions of computer programs, crypto-
graphic snooping, and molecular biology. The biological motivation of the problem is
that long molecules such as proteins and nucleic acids like DNA can be schematically
represented as sequences from a finite alphabet. Taking an evolutionary point of view,
it is natural to compare two DNA sequences by finding their closest common ancestors.
If one assumes that these molecules evolve only through the process of inserting new
symbols in the representing strings, then ancestors are substrings of the string that rep-
resent the molecule. Thus, the length of the longest common subsequence of two strings
is a reasonable measure of how close both strings are. In the mid 1970s, Chvatal and
Sankoff[5] proved that the expected length of the LCS of two randeamny sequences
of lengthn when normalized byn converges to a constant. The value of this constant
yx is unknown although much effort has been spent in finding good upper an lower
bounds for it (see, for examplg3] and references therein). The best known upper and
lower bounds fory, do not have a closed form. There are obtained either as numeric
approximation to the solutions of a nonlinear equation or as a numeric evaluation of
some series expansion (sg@ for a survey of such results).

Although the problem of determining, has a simple statement, it has turned out
to be a challenging mathematical endeavor. Moreover, its quite naturally motivated.
Indeed, a claim that two DNA sequences of lengtlare far apart makes sense pro-
vided their LCS differs significantly fromy,n (since DNA sequence have 4 basis
elements).

We analyze the behavior of, for k tending to infinity, and more generally, we
consider the expected length of the LCS whens an (arbitrarily slowly growing)
function of n and n — oco. The focus on the case whekegrows with n is partly
inspired by the work of Kiwi and Loeb]13]. For a bipartite graplG over two sizen
totally ordered color classes and B, they considered

L(G)=maxX{L :day <---<ap, b1 <---<byp, ajb; € E(G), 1<i<L}

and studied its behavior whe@ is uniformly chosen among all possibtkregular
bipartite graphs onA and B. They established thaL(G)/+dn — 2 asn — oo
providedd = o(n'/%). Under this latter condition, any node of tideregular bipartite
graph can potentially be matched talan — 0 fraction of the other color class nodes.
In the case of interest here, that is the LCS problem with> oo, it also happens
that any sequences’ character can be matched to an expedted D fraction of the
other sequence’s characters. Both for this work andilB], the vanishing fraction of
(expected) potential matches is a key issue.
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In this paper we confirm a conjecture of Sankoff and Mainville from the early
1980s[18] stating that

lim y,vk =2. (1)
k— o0

(See[17, Section 6.8]for a discussion of work on lower and upper bounds jgn
and[15] for recent developments). The most intriguing remaining question is the deter-
mination ofy,. Arratia and Steele (see discussior{28]) observed thag, = 2/(1++/2)
seemed to be consistent with all known computational experiences. But L{Ker
recently showed that this latter equality does not hold.

The constant 2 in1) arises from a connection with another celebrated problem
known as the longest increasing sequence (LIS) problem. An increasing sequence of
lengthL of a permutationt of {1,...,n} is a sequencegii <iz <--- < iy <n such
that n(i1) < n(i2) < --- < n(iy). The LIS problem concerns the determination of the
asymptotic, om, behavior of the LIS for a randomly and uniformly chosen permutation
n. The LIS problem is also referred to as “Ulam’s problem” (e.g.[18,4,16). Ulam
is often credited for raising it if23] where he mentions (without reference) a “well-
known theorem” asserting that givert + 1 integers in any order, it is always possible
to find among them a monotone subsequence &f1 (the theorem is due to BEpvd”
and Szekere$7]). Monte Carlo simulations are reported [B], where it is observed
that over the range <100, the limit of the LIS ofz? 4+ 1 randomly chosen elements,
when normalized byn, approaches 2. Hammersl¢y0] gave a rigorous proof of the
existence of the limit and conjectured it was equal to 2. Later, Logan and $héphp
based on a result by Schenstd®], proved thaty > 2; finally, Vershik and Kero\j24]
obtained thaty<2. In a major recent breakthrough due to Baik, Deift, Johan$4pn
the asymptotic distribution of the longest increasing sequence random variable has been
determined. For a detailed account of these results, history and related work see the
surveys of Aldous and Diaconid] and Stanley[21].

It has been speculated that the behavior of the longest strictly/weakly increasing
subsequence of a uniform random word of lengthwith letters fromX may have
“connections with the subject of sequence comparison statistics, motivated by DNA
sequence matching ..[1]. Our work re-enforces this speculation and in fact does
more. It partly elicits the nature of the connection and the conditions under which
sequence matching statistics relate to the behavior of longest increasing sequences.

2. Statement of results and proof outline

Let A and B henceforth denote two disjoint totally ordered sets. We assume that the
elements ofA are numbered,2, ..., |A| and those oV are numbered,2, ..., |B|. We
denote byr ands the size of|A| and|B]|, respectively. Typically, we have=s = n.

Now, let G be a bipartite graph with color classésand B. Two distinct edgesab
anda’'b’ of G are said to benoncrossingif a anda’ are in the same order dsand
b’; in other words, ifa < a’ andb < b’ ora’ <a andb’ < b. A matching ofG is
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called planar if every distinct pair of its edges is noncrossing. We 1€(G) denote the
number of edges of a maximum size (largest) planar matchinG {mote thatL(G)
depends on the grap@ and on the ordering of its color classes).

We will focus on the following two models of random graphs:

e The random words modeE(K, ,; k): the distribution over the set of subgraphs of
K, obtained by uniformly and independently assigning each nod&,0f one
of k characters and keeping those edges whose endpoints are associated to equal
characters. Note that only disjoint unions of complete bipartite graphs may appear
in this model.

e The binomial random graph modeG (K, ,; p): the distribution over the set of
subgraphs ofK, , where each edge oK, , is included with probabilityp, and
these events are mutually independent. (This is an obvious modification of the usual
G(n, p) model for bipartite graphs with ordered color classes.)

Observe that.(G), whenG is chosen according t8(K, ,; k), is precisely the length
of the LCS of the two words, one for each of the color classe§,oforresponding to
the characters associated kg ,,'s nodes. Also note that the latter words are uniformly
and independently distributed lengthsequences of characters ovek gize alphabet.
In other words, the study ot (X(K, »; k)) is just a re-wording of a similar study of the
LCS of two randomly chosen length sequences over a sikealphabet. Nevertheless,
it will be more convenient to cast our discussion in the language of graph theory.

We now argue that (G) is “subadditive” and from it we draw an important con-
clusion about its expected asymptotic behavior. Let us consider two bipartite géaphs
and G’ over disjoint color classe&, B and A’, B’, respectively. It follows immediately
that L(-) is subadditive, i.e.L(G W G')>L(G) + L(G"), where G W G’ is the graph
obtained by puttings and G’ together side by side, i.e., the color classe&;&df G’ are
AUA’ and BU B’ with the natural ordering (the vertices Affirst and then the vertices
of A’ etc.), andE(G W G’) = E(G) U E(G’). Thus, forG and G’ chosen according to
2(Ky.n; k) and Z(K,,.m; k), respectively, we have

E[L(GWG")] 2E[L(G)] +E[L(G)] .

A standard subadditivity argument implies existence of,lim, E [L(E(Kn,,,; k))/n].
The same claim holds for the binomial random graph model.

In order to keep the presentation simple, we first formulate and prove the results
for the random words model. Then, in SectidBnwe state analogous results for the
binomial random graph model. These results’ proofs are almost identical to the case of
the random words model, and we only briefly comment on them.

Our results essentially say th@t(X(K,. .: k)) - v/k/n converges to 2 ag — oo,
provided thatn is sufficiently large in terms ok.

Theorem 1. For everye > 0 there existkp and C such that for alk > kg and all n
with n/vk > C we have

Q-6 2 < E[LEEn k)] < Ate)- 2L,

N

S
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Moreover there is an exponentially small tail boundamely for everye > 0 there
existsc > 0 such that for k and n as aboye

2n

PHL(Z(Kn,n; k) — ﬁ

>82_n] <e—cn/\/l;.

Vi

Corollary 2. The limity, = lim, o E[L(Z(Ky,a; k))/n] exists and
lim yvk =2
k—o00

In the rest of this section we informally outline the main ideas of the proof and
describe the structure of this paper.

Although we want to deal mainly with the case ofarbitrarily large compared
to k, which is the situation in the Sankoff-Mainville conjecture, we first consider a
seemingly opposite setting: whéis large andn is also large but considerably smaller
than k. For definiteness, here we set= k%7 (in the actual proof we will use a
parameterf instead of 07). Then we expecG to have about?/k = k%4 edges,
and most of these edges connect vertices of degree 1. If wé&'ldte the subgraph
of G obtained by deleting all edges incident to vertices of degree greater than 1,
then G’ is a matching plus some isolated vertices. The nunerf edges ofG’ is
typically very close tok®4. The matching determines a permutation{®f2, ..., N},
and by a symmetry argument, it can be seen that, for a gNjeall permutations of
{1,2,..., N} have the same probability of being obtained in this way. Moreover, the
LIS of the permutation, henceforth denoted hlScorresponds exactly to the largest
planar matching inG’. Therefore, up to a small error, the size of the largest planar
matching inG’ is distributed as LI§ (unfortunately, the error does not seem small
enough to allow for finer investigations of the distribution). Then one can derive from
the known results about LS that E [L(E(K,..; k)] = (24 o(1))n/~/k holds in this
situation. For the rest of the proof, we also need tail estimates for large deviations of
L(X(K, n; k), and these are conveniently obtained from Talagrand’s inequality applied
to L(Z(Kp »; k)) (we cannot directly use known tail estimates for hlSfor example
because of the vertices of degree larger than G)n

Now we considemn very large compared t& (andk still large). A lower bound can
be derived forE [L(Z(K,m; k))] by a straightforward argument: We partition the color
classesA andB of G into segmentsAy, Ao, ... and By, Bo, ... of lengthk®7 each, and
we use the previously derived result separately for each blockifthblock consists
of the subgraph induced hy; and B;). Thus, the lower bound is provided by a planar
matching that never crosses a block boundary.

An upper bound forE [L(Z(Kn,n; k))] is more demanding, since the largest planar
matching need not respect any partition into blocks fixed in advance; there could be
“very skew” edges. Our strategy is to simultaneously consider many different partitions
into blocks. The blocks have upper and lower segments of size at3dytbut they
can be very skew; the segment Afstarting at a position can form a block with a
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segment ofB starting at positiorj, with i andj differing by a large amount. Supposing
that there is a planar matching with at least= (1+ ¢)2n/+/k edges, it “fits” at least
one of the block partitions, meaning that it respects its block boundaries. For each
fixed block partition and each fixed distribution of the numbers of edges of the planar
matching among the blocks, we bound above the probability that there is a planar
matching withm edges that fits that block partition; this relies on independence among
the blocks. Then we sum up over all possible block partitions and show that with high
probability, there is no planar matching with edges at all.

The rest of the paper is organized as follows. In SecBowe state the estimate
for the LIS of a uniformly chosen permutation, Talagrand’s inequality, and a simple
lemma. The tail bounds for the largest planar matching for the case of sraié
derived in SectiorB. The lower and upper bounds for largeare proved in Sections
and 6, respectively. SectiorY states the result for the other considered model of a
random graph and discusses related results from the literature.

3. Tools

A crucial ingredient in our proofs is a sufficiently precise result on the distribution
of the length of the longest increasing subsequence in a random permutation. We state
a remarkable strong result of Baik et @, Egs. (1.7) and (1.8)Jour formulation
slightly weaker than theirs, in order to make the statement simpler). A much weaker
tail bound than provided by them would actually suffice for our proof (e.g., Frieze’s
LIS concentration resulfs]).

Theorem 3. Let LISy be the random variable corresponding to the length of the
longest increasing subsequence of a randomly chosen permutatidn.of, N}. There
are positive constant®o, B1, and ¢ such that for every> BoN1/®

P[LISN >2JN + t] < Biexp (_c(t y Nl/e)s/s)
and
PLISy <2V —1] < Brexp(—ct/NVe)%)

We will also need a suitable version of Talagrand’s inequality; see, e.g.,
[11, Theorem 2.29]

Theorem 4 (Talagrand’s inequality. Suppose thatZi, ..., Zy are independent ran-
dom variables taking their values in some set Let X = f(Z1,...,Zy), Where

f : AN — R is a function such that the following two conditions hold for some
number ¢ and a functiony:

(L) If z,z" € AN differ only in the kth coordinatethen | f(z) — f(z')| <c.
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(W) If z € AN and r € R with f(z)>r, then there exists a witness; : j € J),
JC{1,...,N}, |JI<y(r)/c?, such that for ally € AN with y; = z; wheni € J,
we havef(y)>r.

Let m be a median of X. Thefor all >0,
P[X >m + 1] <2e~'*/4m+n)
and
PLX <m — 1] <2 /4,

We will also need the following version of Chebyshev’s inequality:

Lemma 5. Let X1,..., Xy be random variables attaining valug® and 1, and let
X=X, LetA=Y,_ ., E[X;X,]. Then for all + > 0,

PLIX ~ EIX]| 2] < 5 E[X] A1~ E[X) +4)

Proof. SinceP[|X — E[X]| >1] <Var[X] /% and

Var[x] = Y (E[X;X;] - E[X]E[X;])
iJ

- ZE[X?]—ZE[XJE[X,»]+Z E[XiX,].

i#]

the desired conclusion follows by additivity of expectation and the fact that sice
is an indicator variablex? = X;. O

4. Small graphs

In this section we derive a result essentially saying that Theateholds if k is
sufficiently large in terms of. For technical reasons, we also need to consider bipartite
graphs with color classes of unequal sizes.

Proposition 6. For everyd > 0, there exists glarge) positive constant C such that

(i) If rs>Ck and (r + 5)/rs <ok%?/6, then withm, = m,(r, s) = 2(1 + )/rs/k,
for all +>0,

P[L(Z(Ky.s; b)) = my, + 1] <27 /BmutD)
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@iy If rs>Ck and r 4+ s <0k/6, then withm, as above andn; = m;(r,s) = 2(1 —
0)/rs/k, for all >0,

P[L(Z(K,.s; k) <mj — t] <2e1°/8m

Let G be a random bipartite graph generated according to the random words model
X(K,s; k). The idea of the proof is simple: we show that (ignoring degree 0 nodes)
G is “almost” a matching, and the size of the largest planar matching in a random
matching corresponds precisely to the length of the longest increasing sequence in a
random permutation of the appropriate size.

We have to deal with the (usually few) vertices of degree larger than one. To this
end, we define a grapti’ obtained fromG by removing all edges incident to nodes
of degree at least 2. Througholt,and E’ denoteE(G) and E(G’), respectively.

Ignoring degree 0 nodes;’ is a matching on its end-points. Equivalently it is a
permutation of{1, ..., |E’|}. Theorem3 thus gives us an estimation &f(G’) in terms
of |[E'| = |E|—|E\E'|. But L(G')<XL(G)<L(G")+|E\ E'|. Hence, good estimates on
|E| and |E \ E’| coupled with the aforementioned estimatelqiG’) yields the sought
after bounds onL(G).

We clearly haveE [|E|] = rs/k. We will need a tail bound for large deviation from
the expectation; a simple second-moment argument (Chebyshev’'s inequality) suffices.

Lemma 7. For everyn > 0,

rs rs] 1

PU|E|— 3 271'7 <W-

Proof. Fore € E(K,;) let X, be the indicator of the everd € E. Furthermore,
let X = |E| = ) ,.p X.. The X,’s are indicator random variables with expectation
1/k. Moreover, sinceE [X,X ;] = 1/k? for e # f, we have)_,., E[X.X/]| =
rs(rs —1)/k? = (E[X])? — E[X] /k. Thus, Lemmab yields

1 1
P[|X— E[X] |>77E[X]] <m (1— %)

The desired conclusion follows immediately]
Now we bound above the expectation |&f \ E’|.
Lemma 8.

E[IE\ E'] <(r+s);—;.
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Proof. Let Y, equal the degree oifv if it is at least 2 and O otherwise. Define
Y = ZweV(G) Y,. Note that|E \ E’|<Y (equality does not necessarily hold since
both endpoints of an edge might be incident on nodes of degree at least 2§, Let
be the probability that a vertex in color clagshas exactlyd incident edges. For any

nodea in color classA,

s s—1 2
E[YQ]ZZdezE[de%(a)]—Plz%—;<1—E) <(7)
d=2

(using (1 — x)" >1 — hx). Similarly E[Y;] <(r/k)? for all nodesh in color classB,
and so

E[|E\E/|]<E[Y]<<r+s);—§. O

Proof of Proposition 6. Changing one of the characters associated to a vertex of a
bipartite graphG changes the value df(G) by at most 1. Hencd.(G) is 1-Lipschitz.
Furthermore, the characters associateddon®des ofG suffice to certify the existence

of @ noncrossing edges (and thusG) > w). So Talagrand’s inequality applies and,
with m denoting a median ol (G), yields

PIL(G)=m + 1] <2e"°/8m+D) and P[L(G)<m — 1] <2 /8",

The proposition will follow once we show that; <m <m,. To prove thatm <m,, it
suffices to verify that

(2)

NI =

Let > 0 be a suitable real parameter which we will specify later. We observe that
since|E’|<|E| and L(G) — L(G)<|E \ E'|,

PILG)=m,) < P[IEI>A+n7]

+P[|E \ E'| 25\/%]

+P[L(G/) -2+ 5)\/§, IE'| < (1+ 11)%} .
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We bound the terms one by one. By Lem@and Markov’s inequality,

rs r+s [rs 1
Pl[IENE' |26,/ — | <—,/—<=. 3
[| \E ,/k} pLNLPS 3)

Taking N = (1+n)rs/k and

t=240) %—2W=(2+6—2~/1+n)\/§

in Theorem3 and estimating 206 —2/1+n>2+0—2(1+41n/2) = 6 —n, we get that

P[L(G’)>(2+ 5)@, IE'| < (1+ n)ﬂ

<B; exp(—c(t/Nl/6)3/5)

<Brexp(—(c/2)0 — )¥(rs/k)Y°). (4)

From Lemmay?, (3), and @) it follows that

P[L(G)>m,] < + é + B exp(—(c/2)(5 — 17)3/5(rs/k)1/5) .

n?(rs/k)

So @) follows by taking, says = +/6/C and usingrs > Ck.
To establish thatn; <m, we proceed as before, i.e., we show that

1

PIL(G)<mi] <5 (5)

Indeed, observe that sind€’| = |E| — |E \ E’| and L(G") < L(G),

PIL(G)<mi] < P[IEI<@-n "]

+P[|E\E’|>5.%]

+P[L<G/)<2<1— 5)\@, E'|>1—y- 5)%].
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We again bound the terms one by one, applying as done above L&nkiarkov’s
inequality and TheorenB, respectively. For a suitable real value> 0 we apply
Theorem3 with N = (1 — 5 — d)(rs/k),

t=2VN —2(1—9) /%: (2,/1—;7—5—2+25) /%
obtaining

PIL(G)<m] < i eXp(—c(t/N1/6)3>

n?(rs/k) = 6

1 1 ;
S Resio Teth eXp<_C(25/3— 4n/3) (rs/k)) ,

where we estimated,#1 — i — 6—2+25 > §6— 47 using the inequality/T — x >1—5x
valid for all sufficiently small positivex. So 6) follows by taking againy = /6/C
and usingrs > Ck. Proposition6 is proved. [J

5. The lower bound in Theorem 1

In this section we establish the lower bound on the expectatia(BfK,, ,; k)) and
the lower tail bound for its distribution (the bound for the expectation is very simple
to derive from Propositior6, so we prove it separately, although it is an immediate
consequence of the tail bound).

Given ¢, let 6 > 0 be such thail — 202 =1—¢, and letC = C() be as in
Proposition6. Fix C >+/C large enough so that

52 ~\ .

Let (k) = n = |0k/12]. Proposition6 applies fork>ko where ko is such that
fi(ko) > C+/kg. It follows that

E[LE(Ks k)] = (1—25)-%-P[L(G)}Z(l—%)%}
27 5 i
> (1-20)- TnE (1—2exp<—4(1+5) %))
> 1d-e- c

S
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The desired lower bound on the expectation follows since by subadditiify;) -
E[L(Z(Knn; k)] is nondecreasing.

Now we establish the lower tail bound. Lét= [C+/k ] and g = |n/i|. Moreover,
let G be chosen according tB(K,, ,; k) and letG; be the subgraph induced @& by
the vertices(i—1) -n+1,...,i-n in each color class;, = 1, ..., . We observe that
L(Gy), ..., L(G,) are independent identically distributed with distributi&ioKy ;; k)
and L(G)>L(G1) + --- + L(Gy). Let u = E[L(G;)] and t = e(2n/\/k). Since
n<(q + Ln, the lower bound oru proved above yields that

q
P[L(G)s(l— 3e) - j’%} <P[Z L(G)<qu—1+ (- r)} .
i=1

An argument similar to the one used above to derive the boundl — ¢)2i/vk can
be used to obtainu< (1 + ¢)27i/+/k from Proposition6. Let n be large enough so
thatn>n(1+ 2¢)/e. Thus,q>(1+¢)/e andt>equ/(1 + &) >p. Hence, a standard
Chernoff bound[11, Theorem 2.1jmplies that

q 2
P[L<G><(1—38> : %} < F’{Z L(Gi)squ—r} < exp(—%)
i=1

oo 2)
S exp 20+¢) V&)

6. The upper bound in Theorem 1

We will only discuss the tail bound sincé(Z(K, ,; k))<n always, and so the
claimed estimate for the expectation follows from the tail bound.

Let ¢ > O be fixed. We choose a sufficiently smélk= 6(¢) > 0, much smaller than
¢. Requirements or will be apparent from the subsequent proof.

Henceforth, we fix constants/2 < « < § < 3/4 (any choice ofx and f in the
specified range would suffice for our purposes). In this section, we will always assume
that k > ko for a sufficiently large integeko = ko(¢), and thatn is sufficiently large
compared td: n>kP, say. Note that fon <k? (andk sufficiently large), the tail bound
of Theoreml follows from Proposition6.

Below we first introduce the notion of a block partition associated to a “large” planar
matching. We then classify block partitions into different types. Finally, we show that
there are not too many different types, and that there is a very small probability that
a random graph chosen accordingi¢=(K, »; k)) is of a given fixed type. A bound
on the probability of a “large” planar matching occurring immediately follows. This
provides us with the sought after upper tail bound.
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6.1. Block partitions
Let us write

2n
mmax= (L+¢&) - —

N

for the upper bound on the expected size of a planar matching as in Thdordfa
also define an auxiliary parameter

L=k".

This is a somewhat arbitrary choice (but given by a simple formula). The essential
requirements orf are that¢ be much larger thar/k and much smaller thak®4. We
note thatn/¢ is large by our assumption>k”.

Let M be a planar matching witynax edges on the set& and B, |A| = |B| = n.
We define a partition oM into blocks of consecutive edges. There will be roughly
n/¢ blocks, each of them containing at most

\;1 E J
€max = | T * = *Mmax
o0 n

edges ofM. S0 emax is of order¢/+/k, which by our assumptions can be assumed to
be larger than any prescribed constant. Moreover, we require that no block is “spread
over more thar? consecutive nodes iA or in B.

Formally, theith block of the partition will be specified by nodes,a, € A and
b;,b; € B; a;b; € M is the first edge in the block angb; € M is the last edge (the
block may contain only one edge, and &®; = a;b; is possible). The edge;b; is
the first edge oM, anda; 116,11 is the edge oM immediately followinga;b.. Finally,
given a;b;, the edgeu;b; is taken as the rightmost edge BF such that

e theith block has at mos¢max edges ofM, and

e a; —a; <t and b; — b; <t (here and in the sequel, with a little abuse of notation,
we regard the nodes iA and those inB as natural numbers, 2, ..., n, although
of course, the nodes iA are distinct from those oB).

Let ¢ denote the number of blocks obtained in this way. It is easily seengthat
on/t).
A block partition is schematically illustrated in Figd.

6.2. Counting the types

Let ¢; be the number of edges d¥l in the ith block. Let us call the &-tuple
T = (a1,ay,b1,b), €1, ..., aq,a,,bq, by, eq) the type of the block partition ofM, and
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b, b,

2, 8 = g ,=d a 4

Fig. 1. A block partition.

let us writeT = T(M). Let T denote the set of all possible types of block partitions
of planar matchings as above.

Lemma 9. We have
n
< —
|T1< exp(ClE Iogﬁ)

with a suitable absolute constaidt;.

Proof. The number of choices fouy,...,a, is at most the number of ways of
choosingg elements out ofn, i.e., (Z) Since mmax<n, the number of choices for
the ¢; is no larger than the number of partitions ofinto ¢ positive summands,
which is (Z) Grossly overestimating, for a fixeg we can thus bound the number
of types by(")s. Using the standard estima(g)g (en/q)? andg = O(n/t), we get
log|T| = 0(61/6) log?) as claimed. O

6.3. The probability of a matching with a given type of block partition

Next we show that for every fixed typ€, the probability that our random graph
contains a planar matching of sizgnax with that type of block partition is very small.

Lemma 10. Let n and k be as above. For any given types 7, the probability pr

that the random graplX(K, »; k) contains a planar matching M withmayx edges and
with T(M) = T satisfies

n
<expl —ce?s - —
r p( ‘ \/E>

with a suitable absolute constaat> 0.
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Proof. Let G; denote the subgraph of the considered random gEx#h, ,,; k) induced
by the nodess;,a; +1,...,a; andb;, b; +1,...,b;. We note that the distribution of
G; is the same as that &(K,, 5;: k), wherer; =a/ —a; + 1 ands; = b, — b; + 1.

A necessary condition for the existence of a planar matcMngith 7(M) =T is
L(Gj)>e; for all i =1,2,...,¢q. Crucially for the proof, the event&(G;)>e; are
independent for distinct, and so we have

q
pr<[]PILEK, k) >e].
i=1

The plan is to apply Propositio(i) for eachi. The construction of the block partition
guarantees thaf, s; <¢, and so the conditionr; + s;)/risi < 5k3/2/6 in Proposition6

is satisfied. However, the conditiofs; > Ck may fail. To remedy this, we artificially
enlarge the blocks; clearly, this can only increase the probability that a planar matching
of sizee; is present.

Let us call theith block shortif it is the last block, i.e.j = ¢, or if ¢; = emax. Let
S C [¢] denote the set of all indices of short blocks. We h&\& — 1)emax<mmax
and sinCeemax> § - £ - mmax— 1, we obtain|S|<25n/¢.

The blocks that are not short are callegfjular, and we writeR = [¢] \ S. For a
regular blocki, we have magu; 1 — a;, b;+1 — b;) > £ by the construction of the block
partition.

Now we define the sizes of the artificially enlarged graphs, which will replace the
G; in the subsequent calculation. Namely, for a short black §), we set

For a regular blocki(e R), we distinguish two cases. l;11 —a; >¢, we seti; = ¢
ands; = max(d¢, s;). Otherwise, we sef; = max(o¢, r;) ands; = £.

In the first case above, we have<a;+1 —a; ands; — s; <o¢, and similarly for
the second case. Therefor®,, ., i <n + 0f - |R| = (14 0(9))n, with an absolute
constant in theO (-) notation, and similarly} ", 5; = (1+ 0 (d))n. Fori € S we find
Yoies Tis Xjes Si <|S|- £<20n. Altogether

q q
dYoR<@A+ 0@, Y s<A+0O)n. (6)

i=1 i=1
Now 7; ands; already satisfy the requirements of Propositig(i), since we have

Fi5i =002 = 0k** > Ck and (7; + 5;)/7i5; <22 = 2k** < 6k%/2/6. We thus have, by
Propositions,

PIL(Z(KF:, 55 k) > ej] <2 (@mulFi5)?/8e
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for all i such thate; >m, (r;, 5;), wherem,(r, s) = (1+0)2/rs/k. In the denominator
of the exponent, we estimate <emax. We thus have

q
L 75 )2
PT g 1_[ 2e~ max(0,e; —my, (7;,5;))*/8emax

(note that the factors for with ¢; < m,(r;,5;) equal 1). We consider the loga-
rithm of pr, we use the Cauchy-Schwarz inequality, and the inequality(@ax +
max(0, y) > max(0, x + y):

q

Y max©, e; — my (i, 5))% — qIn2
8emax -1

—Inpr >

. 2
11 (Z max(0, ¢; —mu(fi,§i))> —qln2

=
8e
max ¢ im1

¢ q q o 2
> o). — ;(; ei — ;mum,s») —gqIn2
> Q(%z) ((1%)% 2<1+5) Z \/r,sl) —gln2.

The function (x, y) — /xy is subadditive:,/xy + /x'y' < /(x +x)(y + y’). Thus,

using @), we have
q
Y VEs<A+0O)n

and so, sincey = O(n/1) and !>k,

ok 2n 2n\? _ PY
—|npr>Q<T> ((1+8)ﬁ—(l+ 0(5))ﬁ) —q|n2—Q(8 5-—) .

Lemmal0 is proved. O

4

Proof of Theorem 1. We have

PILE Ky n: k) Zmmad < 3 pr<IT|-maxpr.
TeT
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The sought after estimate
P[LE(Knn: k) =mmax] < eXp(—Q(ezén/Jl? )) ,

follows from Lemmas9 and 10. O

7. Extensions

Similarly one can prove results for the Blfnodel analogous to those obtained in
previous sections (essentially,is now replaced by Ap):

Theorem 11. For everye > 0 there exist constantgg € (0, 1) and C such that for
all p < po and all n withn,/p > C we have

(1—e)-2n- /P<E[L(G(Knn; p))] <A +e)-2n-p.

Moreover there is an exponentially small tail boundamely for everye > 0 there
existsc > 0 such that for p and n as aboye

P[|L(G(Knni ) — 20| Ze2n/p] <e V7.

Subadditivity arguments yield thﬁ[L(G(Kn,n; p))] /n converges to a constant,
asn — oo. The previous theorem thus implies th@ay/./p — 2 asp — 0.

Also, similar results hold for th& (K, s; p) model as those derived f& (K, s; k).
Specifically:
Proposition 12. For everyd > 0, there exists glarge) positive constant C such that

() If rs>C/p and (r + 5)/rs <9/6p%2, then withm, = m,(r, s) = 2(1 + &) /rsp,
for all +>0.

P[L(G(Kys; p)) =my + 1] <2e1*/BmutD

@iy If rs>C/p andr + s <0/6p, then withm, as above andn; = m;(r,s) = 2(1 —
0)./rsp, for all t>0

PIL(G(K,s: p) <my —1] <2¢~"/3"0.

Gravner et al[9] consider processes associated to rand@m)—matrices where each
entry takes the value 1 with probability, independent of the values of other matrix
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entries. In particular they study a process caltetbnted digital boiling (ODB) and
analyze the behavior of a so-calldéatight functionH (M, ({0, 1}); p) which equals,

in distribution, the length of the longest sequence, j;)}; of positions of 1's in

a random (0, 1)—matrix of sizen x n such that thei;’s are increasing and the¢’s

are nondecreasing. In contragt(G(K, ,; p)) equals in distribution the longest such
sequence with botly’s and j;'s increasing. This latter model is referred to stsict
oriented digital boilingin [9]. Seppalainerj20] had studied it through an embedding
into an interacting particle system and established what amounts to saying that for all
O0<p<l1

1 2
Jim E[L(G(Knn: p))] = e @)
Also noteworthy is the fact that ifi9] the exact limiting distribution of the height
function H(M,,({0, 1}); p) is obtained. To the best of our knowledge, no such lim-
iting distribution result is know for strict ODB, i.e., the asymptotic distribution of
L(G(K,. »; p)) is unknown.

The results off9, Section 3(1)]imply that for anyp < 1/2,

1
lim . E[HWM,({0,1}); p)l =2y p(1—p). 8)

Clearly, an ODB process dominates that of a strict ODB process. Hence, Both (
and @) imply that limsup,_.o Ap//P<2. Nevertheless, our derivation of this latter
limit value is elementary in comparison with the highly technical naturd9pfand
unrelated to that 0f20].
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