
Matrices and Linear Trans. Discussion Session #1 July 5

Justify all answers! I recommend doing these questions out of order and focus first on questions with which

you are less comfortable.

Please let me know if I’ve made any mistakes in my solutions.

(1) Solve the following linear equations:

(a)


2 0 2 2

0 1 0 −1

3 0 −1 −1

4 1 2 1

 ~x =


6

−1

0

9

.

Solution:
2 0 2 2 6

0 1 0 −1 −1

3 0 −1 −1 0

4 1 2 1 9


1
2 ·r1, r3−3r1, r4−4r1

 


1 0 1 1 3

0 1 0 −1 −1

0 0 −4 −4 −9

0 1 −2 −3 −3

 r4−r2 


1 0 1 1 3

0 1 0 −1 −1

0 0 −4 −4 −9

0 0 −2 −2 −2



r4− 1
2 r3 


1 0 1 1 3

0 1 0 −1 −1

0 0 −4 −4 −9

0 0 0 0 5
2


There is no solution. �

(b)

3 0 1

1 1 3

1 2 −5

 ~x =

 7

4

−1

.

Solution:3 0 1 7

1 1 3 4

1 2 −5 −1

 r2→r1→r3→r2 

1 1 3 4

1 2 −5 −1

3 0 1 7

 r2−r1, r3−3r1 

1 1 3 4

0 1 −8 −5

0 −3 −8 −5


r3+3r2 

1 1 3 4

0 1 −8 −5

0 0 −32 −20



Therefore, ~x =
1

8

17

0

5

. �

(2) Fix A ∈ Rm×n.

(a) When does A~x = ~0 have a unique solution?

Solution: This happens precisely when A has full column rank. �

(b) In general, what are the possible number of solutions to A~x = ~b? (e.g. can there be exactly 3

solutions?)

Solution: There are either no solutions, one solution, or infinitely many solutions.
1



2

This follows from the fact that A~x = ~0 has either one solution or infinitely many, and if A~x = ~b has

a solution, call one ~xp, then the full set of solutions is {~xp + ~xh : A~xh = ~0}. �

(c) If there is some ~b ∈ Rm for which A~x = ~b has at least two solutions, how many solutions does

A~x = ~0 have?

Solution: Let ~xp be one of the solutions to A~x = ~b. Then the full solution set is {~xp+~xh : A~xh = ~0}.
Since this set has at least two elements, we see that there must be at least two solutions to A~x = ~0,

and thus there must in fact be infinitely many. �

(d) Show that if m 6= n, then either there is some ~b ∈ Rm for which A~x = ~b has no solution, or there is

some ~b ∈ Rm for which A~x = ~b has infinitely many solutions.

Solution: Since rankA ≤ min{m,n} and m 6= n, we know that either A does not have full row

rank, or does not have full column rank. This then implies one of the two conclusions. �

(e) Suppose that m = n and there is some ~b ∈ Rn for which A~x = ~b has no solution. How many

solutions does A~x = ~0 have?

Solution: If there is some ~b for which A~x = ~b has no solution, then A cannot have full row rank.

Since A is square, this means also that A does not have full column rank, so A~x = ~0 must have a

non-trivial solution. Therefore, A~x = ~0 has infinitely many solutions. �

(f) Suppose that m = n and that A~x = ~0 has only the trivial solution. How many solutions does

A2~x = ~0 have? Prove your claim without using any facts about rank or inverses.

Solution: Suppose that A2~x = ~0 were to have a non-trivial solution; call it ~y. We claim that

A~x = ~0 also has a non-trivial solution. If A~y = ~0, then we’re done, so suppose that A~y 6= ~0. But

then ~0 = A2~y = A(A~y), so A~y is a non-trivial solution to A~x = ~0. �

(3) For ~u,~v ∈ Rn where ~u 6= ~0, the line in the direction of ~u which passes through the point ~v is the set of

points {~v + t~u : t ∈ R}. Suppose we have two lines `1, `2 in Rn.

How can we use a linear equation to determine whether or not `1 and `2 intersect?

Solution: Suppose that `i = {~vi + t~ui : t ∈ R}. Note that `1 and `2 intersect if and only if there are

t, s ∈ R for which ~v1 + t~u1 = ~v2 +s~u2. In other words, `1 and `2 intersect if and only if there is a solution

to the linear equation [
~u1 −~u2

] [t
s

]
= ~v2 − ~v1.

�

(4) For ~u,~v ∈ Rn where ~u 6= ~0, the hyperplane perpendicular to ~u which passes through the point ~v is the

set of points {~x ∈ Rn : ~uT (~x− ~v) = 0}.
For hyperplanes H1 6= H2 in Rn, when do H1 and H2 intersect?

Solution: Suppose that Hi = {~x ∈ Rn : ~uTi (~x − ~vi) = 0} and notice that Hi = {~x ∈ Rn : ~uTi ~x = ci}
where ci = ~uTi ~vi.

Therefore, H1 and H2 intersect if and only if there is a solution to[
~uT1

~uT2

]
~x =

[
c1

c2

]
.
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By relabeling if necessary (i.e. switching the “1” and “2”), the REF augmented matrix for this equation

will look like [
~uT1 c1

~uT2 − α~uT1 c2 − αc1

]
for some α ∈ R.

Firstly, there is no solution if and only if ~uT2 − α~uT1 = ~0T , but c2 − αc1 6= 0. In other words, H1 and

H2 are parallel, but not equal.

Next, if both ~uT2 − α~uT1 = ~0T and c2 − αc1 = 0, then H1 and H2 are actually the same hyperplane.

Otherwise, ~uT2 − α~uT1 6= ~0T , so we know that the matrix in this equation has rank 2, which implies

that there will always be a solution.

Putting this together, H1 6= H2 intersect if and only if they are not parallel. �

(5) Let A,B ∈ Rn×n.

(a) Show that A is non-singular if and only if AT is non-singular.

Solution: We find that AT (A−1)T = (A−1A)T = ITn = In, and so (AT )−1 = (A−1)T . �

(b) Show that if A is non-singular, then so is A−1.

Solution: We know that A−1A = In, so in fact (A−1)−1 = A. �

(c) Show that if both A and B are non-singular, then so is AB.

Solution: We verify (B−1A−1)(AB) = B−1InB = In, so (AB)−1 = B−1A−1. �

(d) Show that if AB is non-singular, then so are both A and B.

Solution: We know that (AB)−1(AB) = (AB)(AB)−1 = In. Grouping terms together differently,

we see that
[
(AB)−1A

]
B = In and A

[
B(AB)−1

]
= In. Thus, both A and B have inverses. �

(e) Suppose that A is non-singular. Show that AB = BA if and only if A−1B = BA−1.

Solution: By multiplying the equation AB = BA on both the left and right by A−1 we find

A−1ABA−1 = A−1BAA−1 =⇒ BA−1 = A−1B.

Since (A−1)−1 = A, this shows the other direction as well. �

(f) Suppose that A is non-singular and B is row-reducible to A. Must B be non-singular?

Solution: Yes. Since B is row-reducible to A, there is a matrix C ∈ Rn×n such that CB = A.

Therefore A−1CB = In, so B is non-singular with B−1 = A−1C. �

(g) Suppose that A4 = On where On is the n×n zero matrix. Show that A must be singular, yet In−A
is non-singular with (In −A)−1 = In +A+A2 +A3.

Solution: If A were non-singular, then A4(A−1)4 = AAAAA−1A−1A−1A−1 = I4n = In, so A4 must

be non-singular as well. But A4 = On which is singular; a contradiction.

To show that (In −A)−1 = In +A+A2 +A3, we simply verify

(In −A)(In +A+A2 +A3) = In +A+A2 +A3 −A−A2 −A3 −A4 = In −A4 = In.

�


