
Matrices and Linear Trans. Discussion Session #2 July 12

Justify all answers! I recommend doing these questions out of order and focus first on questions with which

you are less comfortable.

Throughout, V is assumed to be a vector space over R.

Please let me know if I’ve made any mistakes in my solutions.

(1) Let X ⊆ V . Show that if S ≤ V contains X, then S ⊇ spanX. (This justifies the remark that spanX

is the “smallest” subspace which contains X)

Solution: If S ≤ V and x1, . . . , xn ∈ S, then c1x1 + · · ·+ cnxn ∈ S for any c1, . . . , cn ∈ R.

Thus, if X ⊆ S, then S contains every finite linear combination of elements of X, so spanX ⊆ S as

well. �

(2) This exercise will give us another way to define spanX.

(a) Let S be a collection of subspaces of V ; that is, S is a set whose elements are subspaces of V . Show

that
⋂

S∈S S ≤ V where
⋂

S∈S S = {v ∈ V : v ∈ S for every S ∈ S}. (This cannot be proved by

induction since S may have infinitely many elements)

Solution: Set Ŝ =
⋂

S∈S S. Since S ≤ V for all S ∈ S, we know that 0 ∈ S for all S ∈ S. Therefore

0 ∈ Ŝ, so Ŝ 6= ∅.

Now, take x1, x2 ∈ Ŝ and c1, c2 ∈ R; we need to show that c1x1 + c2x2 ∈ Ŝ. Since x1, x2 ∈ Ŝ, we

know that x1, x2 ∈ S for every S ∈ S and since S ≤ V , we know that c1x1 + c2x2 ∈ S as well.

Therefore, c1x1 + c2x2 ∈ S for every S ∈ S, so c1x1 + c2x2 ∈ Ŝ. �

(b) Fix X ⊆ V and let X be the collection of all subspaces of V which contain X; that is, X = {S ≤
V : S ⊇ X}. Set X̂ =

⋂
S∈X S.

Show that X̂ ⊇ X and that if T ∈ X , then T ⊇ X̂.

Solution: Fix x ∈ X. By definition, x ∈ S for every S ∈ X , so x ∈ X̂ as well. Thus, X ⊆ X̂.

Fix x ∈ X̂; we need to show that x ∈ T . Since x ∈ X̂, we know that x ∈ S for all S ∈ X by

definition. Since T ∈ X , this means that x ∈ T ; thus X̂ ⊆ T . �

(c) Show that spanX = X̂.

Solution: We know that spanX ∈ X , so by part (b), we must have spanX ⊇ X̂.

On the other hand, since X̂ ≤ V and X̂ ⊇ X, by problem (1), we know that X̂ ⊇ spanX.

Therefore spanX = X̂. �

(3) Show that if X,Y ⊆ V , then span(X ∪ Y ) = spanX + spanY .

Solution: We show first that spanX + spanY ⊆ span(X ∪ Y ). Fix z ∈ spanX + spanY , so we know

we can write z = x + y for some x ∈ spanX and y ∈ spanY . By the definition of span, we can write

x = c1x1 + · · · + cnxn and y = d1y1 + · · · + dmym for some x1, . . . , xn ∈ X, y1, . . . , ym ∈ Y , and

c1, . . . , cn, d1, . . . , dm ∈ R. Therefore z = c1x1 + · · · + cnxn + d1y1 + · · · + dmym, so z ∈ span(X ∪ Y )

since x1, . . . , xn, y1, . . . , ym ∈ X ∪ Y .

For the other direction, fix z ∈ span(X ∪ Y ), so we can write z = c1z1 + · · · + cnzn for some

z1, . . . , zn ∈ X ∪ Y and c1, . . . , cn ∈ R. Now, relabel these zi’s and ci’s so that z1, . . . , zk ∈ X and

zk+1, . . . , zn ∈ Y for some 0 ≤ k ≤ n. Set x = c1z1 + · · · + ckzk and y = ck+1zk+1 + · · · + cnzn where
1
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x = 0 if k = 0 and y = 0 if k = n. Notice that x ∈ spanX and y ∈ spanY , so z = x+y ∈ spanX+spanY .

�

(4) Show that if S1, . . . , Sn ≤ V are finite-dimensional subspaces, then dim(S1 + · · ·+ Sn) ≤ dimS1 + · · ·+
dimSn.

Solution: We first prove by induction that if X1, . . . , Xn ⊆ V , then span(X1 ∪ · · · ∪Xn) = spanX1 +

· · ·+ spanXn.

Base Cases: n = 1 is trivial.

n = 2 is proved in problem (3).

Induction Hypothesis: For some N > 2, for any X1, . . . , XN−1 ⊆ V , we have span(X1 ∪ · · · ∪
XN−1) = spanX1 + · · ·+ spanXN−1.

Induction Step: Let X1, . . . , XN ⊆ V and set Y = X1∪· · ·∪XN−1. By the n = 2 case, we know that

span(Y ∪XN ) = spanY +spanXN . Furthermore, by the induction hypothesis, spanY = spanX1 + · · ·+
spanXN−1. Therefore, span(X1∪· · ·∪XN ) = spanY +spanXN = spanX1+ · · ·+spanXN−1+spanXN

as needed.

Now, let Bi be a basis for Si. We just showed that S1 + · · ·+ Sn = span(B1 ∪ . . .Bn), so we have

dim(S1 + · · ·+ Sn) ≤ |B1 ∪ · · · ∪ Bn| ≤ |B1|+ · · ·+ |Bn| = dimS1 + · · ·+ dimSn.

�

(5) Let S1, S2 ≤ V .

(a) Let Bi be a basis for Si. Prove that if S1 ∩ S2 = {0}, then B1 ∪ B2 is a basis for S1 + S2.

Solution: We need to show that B1 ∪B2 is linearly independent and span(B1 ∪B2) = S1 +S2. The

latter follows directly from the previous problem, so we need only show linear independence.

Fix x1, . . . , xn, y1, . . . , ym ∈ B1 ∪B2 where x1, . . . , xn ∈ B1 and y1, . . . , ym ∈ B2 (note that we could

have either n = 0 or m = 0 here). Consider a linear combination c1x1 + · · ·+ cnxn + d1y1 + · · ·+
dmym = 0; we need to show that c1 = · · · = cn = d1 = · · · = dm = 0. The above equation implies

that

c1x1 + · · ·+ cnxn = −d1y1 − · · · − dmym.

Since x1, . . . , xn ∈ B1, we know that the left-hand side is an element of S1. Since y1, . . . , ym ∈ B2,

we know that the right-hand side is an element of S2. As such, we know that c1x1 + · · ·+ cnxn and

−d1y1 − · · · − dmym are both elements of S1 ∩ S2. However, S1 ∩ S2 = {0}, so

c1x1 + · · ·+ cnxn = 0

−d1y1 − · · · − dmym = 0

Finally, for each i ∈ {1, 2}, Bi is a basis for Si, so it is linearly independent. This implies that

c1 = · · · = cn = 0 and d1 = · · · = dm = 0. �

(b) Show that if S1, S2 ≤ V are finite-dimensional and S1 ∩ S2 = {0}, then dim(S1 + S2) = dimS1 +

dimS2.

Solution: By part (a), if Bi is a basis for Si, then B1 ∪ B2 is a basis for S1 + S2. Furthermore,

B1 ∩ B2 = ∅, so

dim(S1 + S2) = |B1 ∪ B2| = |B1|+ |B2| = dim(S1) + dim(S2).
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�

(c) Use the Steinitz exchange lemma to prove that if dimV < ∞ and X ⊆ V is linearly independent,

then there is a basis B for V with X ⊆ B. This is known as the Basis Extension Lemma.

Solution: Suppose dimV = n and let B′ = {b1, . . . , bn} be any basis for V . Suppose also that

X = {x1, . . . , xm}. Since X is linearly independent and B′ is spanning, the Steinitz exchange lemma

tells us that m ≤ n and we can re-label the vectors in B′ so that B = {x1, . . . , xm, bm+1, . . . , bn} is

spanning. Now, B is a set of n vectors which spans V , so B must be a basis for V . �

(d) Challenge: Show that if S1, S2 ≤ V are finite-dimensional, then dim(S1 +S2) = dimS1 +dimS2−
dim(S1 ∩ S2).

Solution: Since S1, S2 are finite dimensional, so is S1 ∩ S2. Let B be a basis for S1 ∩ S2.

By the basis extension lemma, we can find Bi ⊇ B such that Bi is a basis for Si. Set B′2 = B2 \ B
and set S′2 = spanB′2. We notice that B′2 is a basis for S′2, so dimS′2 = dimS2 − dim(S1 ∩ S2).

Furthermore, S1 + S2 = S1 + S′2.

Finally, we claim that S1 ∩ S′2 = {0}. If not, then there is some non-zero v ∈ S1 ∩ S′2. Now,

S1 ∩ S′2 ⊆ S1 ∩ S2 and also S1 ∩ S′2 ⊆ S′2. Thus, v can be written as a linear combination of vectors

in B and can also be written as a linear combination of vectors in B′2. Since v 6= 0, this implies that

v can be written as a linear combination of vectors in B2 in at least two different ways, contradicting

the fact that B2 is linearly independent.

Thus, S1 ∩ S′2 = {0}, so we apply part (b) to conclude that

dim(S1 + S2) = dim(S1 + S′2) = dimS1 + dimS′2 = dimS1 + dimS2 − dim(S1 ∩ S2).

�

(6) Show that if S ≤ V is a proper subspace (that is S 6= V ), then span(SC) = V .

Solution: It suffices to show that S ⊆ span(SC) since we already know that SC ⊆ span(SC) and

S ∪ SC = V .

Since S 6= V , we know that SC 6= ∅. Furthermore, 0 ∈ S, so 0 /∈ SC , meaning that there is some

non-zero v ∈ SC

Fix any s ∈ S; we need to show that s ∈ span(SC). Consider s+ v; if s+ v ∈ S, then since S ≤ V , we

would have v = (s + v)− s ∈ S, which isn’t true. Therefore, s + v ∈ SC , so s = (s + v)− v ∈ span(SC)

as needed. �

(7) Recall that a function f : X → Y is called an injection (one-to-one) f(x1) = f(x2) if and only if x1 = x2;

and is called a surjection (onto) if for every y ∈ Y , there is x ∈ X with f(x) = y.

For this exercise, pretend that the first week of class did not happen, i.e. we have never seen a pivot

before, we don’t know what an inverse matrix is, etc. That is, answer these questions using only basic

matrix operations and facts about subspaces.

(a) Let A ∈ Rm×n and consider A as a function A : Rn → Rm. Show that A is a surjection if and only

if rankA = m.

Solution: Since ColA = {~b ∈ Rm : A~x = ~b for some ~x ∈ Rn}, we see that A is a surjection if and

only if ColA = Rm. Since ColA ≤ Rm always and rankA = dim ColA, we see that A is a surjection

if and only if rankA = m. �
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(b) Show that A is an injection if and only if NulA = {~0}.

Solution: First suppose that A is an injection, so, in particular, the only solution to A~x = ~0 is

~x = ~0; i.e. NulA = {~0}.
Now suppose that NulA = {~0}. Suppose that ~x, ~y ∈ Rn has A~x = A~y. This happens if and only if

A(~x − ~y) = ~0, or equivalently, ~x − ~y ∈ NulA. Since NulA = {~0}, this means that ~x − ~y = ~0 =⇒
~x = ~y, i.e. A is an injection. �

(c) Let A ∈ Rn×n. Show that A is an injection if and only if A is a surjection.

Solution: By the rank–nullity theorem, we know that dim NulA + rankA = n here.

If A is an injection, then dim NulA = 0 by part (b), which means that rankA = n, so A is a

surjection by part (a). Similarly, if A is a surjection, then rankA = n by part (a), so dim NulA = 0,

so A is an injection by part (b). �

(8) Does there exist a matrix A ∈ R3435×3435 with NulA = ColA?

Solution: No. The rank–nullity theorem tells us that dim NulA + dim ColA = 3435 in this case. But

if dim NulA = dim ColA, then dim NulA + dim ColA is an even number, which 3435 is not. �


