
Matrices and Linear Trans. Discussion Session #5 Aug 2

Justify all answers! I recommend doing these questions out of order and focus first on questions with which

you are less comfortable.

Please let me know if I’ve made any mistakes in my solutions.

(1) Suppose that A ∈ Cn×n is non-singular.

(a) Show that there is a polynomial p with deg p < n and A−1 = p(A).

Solution: Let PA(t) = a0+a1t+ · · ·+an−1tn−1+tn be the characteristic polynomial for A. Since A

is non-singular, we know that 0 is not an eigenvalue of A, so a0 6= 0, so write PA(t) = a0 + tp(t) and

notice that deg p < n. By the Cayley–Hamilton theorem, we then have On = PA(A) = a0In+Ap(A),

so since a0 6= 0, we have A−1 = − 1
a0
p(A). �

(b) Use part (a) to verify that if A =

[
a b

c d

]
, then A−1 = 1

ad−bc

[
d −b
−c a

]
.

Solution: We first compute PA(t) = t2 − (a+ d)t+ (ad− bc). By applying part (a), we thus have

A−1 = − 1

ad− bc
(
A− (a+ d)I2

)
= − 1

ad− bc

[
a− (a+ d) 0− b

0− c d− (a+ d)

]
=

1

ad− bc

[
d −b
−c a

]
.

�

(2) Suppose that A ∈ Cn×n has eigenvalues λ1, . . . , λn which are all distinct. Must A be diagonalizable?

Solution: Yes. We know that there are some ~v1, . . . , ~vn ∈ Cn with A~vi = λi~vi. Then by HW9, since

λ1, . . . , λn are distinct, we know that {~v1, . . . , ~vn} is linearly independent, and therefore a basis for Cn.

�

(3) Use Cayley–Hamilton to show that if A ∈ C2×2 has trA = 0, then A2 = cI2 for some c ∈ C.

Solution: By direct computation we see that if A ∈ C2×2, then PA(t) = t2− (trA)t+ detA, so PA(t) =

t2 + detA in this case. Then by Caley–Hamilton, O2 = PA(A) = A2 + (detA)I2 =⇒ A2 = −(detA)I2.

�

(4) Suppose that A ∈ Cn×n satisfies A2 = In. Prove that A is diagonalizable.

Solution: Notice that the fact that A2 = In means that all eigenvalues of A are either 1 or −1; hence

we need to show that E1(A) + E−1(A) = Cn. Let ~x ∈ Cn×n; we need to write ~x = ~x1 + ~x−1 where

~x1 ∈ E1(A) and ~x−1 ∈ E−1(A). Set ~x1 = 1
2 (~x+A~x) and ~x−1 = 1

2 (~x−A~x) so that ~x1 + ~x−1 = ~x.

Now, A~x1 = 1
2 (A~x+A2~x) = 1

2 (A~x+ ~x) = ~x1, so ~x1 ∈ E1(A).

On the other hand, A~x−1 = 1
2 (A~x−A2~x) = 1

2 (A~x− ~x) = −~x−1, so ~x−1 ∈ E−1(A). �

(5) Suppose that A ∈ Rn×n>0 , i.e. A has strictly positive entries. Suppose that all row-sums of A are 1; that

is A~1 = ~1. Show that E1(A) = span{~1}.

Solution: Suppose that A~x = ~x with ~x 6= 0; we need to show that ~x is a scalar multiple of ~1; that is

x1 = x2 = · · · = xn. Suppose that k ∈ [n] |xk| ≥ |xi| for all i ∈ [n]; since we can scale an eigenvector to

get another and ~x 6= ~0, we may suppose that xk = 1.
1
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Now, A~x− ~x = ~0, so by looking at the kth row of this equation, we find that

0 = (Ak1x1 +Ak2x2 + · · ·+Aknxn)− xk =⇒ 1 =
∑
`

Ak`x`.

Now, if ~x 6= ~1, then since |xi| ≤ 1 for all i, there must be some i for which |xi| < 1. Thus, since Ak` > 0

for all `, we would then have

1 = |1| =
∣∣∣∣∑
`

Ak`x`

∣∣∣∣ ≤∑
`

Ak`|x`| <
∑
`

Ak` = 1;

a contradiction. �

(6) A matrix A ∈ Cn×n is called nilpotent if there is some integer k for which Ak = On. Show that if A is

nilpotent, then in fact An = On.

Solution: Since Ak = On for some k, we know that all eigenvalues of A are 0; in other words PA(t) = tn.

Thus, by Caley–Hamilton, On = PA(A) = An. �

(7) Let Q ∈ Rn×n be an orthogonal matrix (recall that this is just the name for real, unitary matrices) with

detQ = 1. Show that if n is odd, then there is some non-zero ~x ∈ Rn with Q~x = ~x.

(Hint: what do you know about the roots of a polynomial with real coefficients?)

Solution: We simply need to show that 1 is an eigenvalue for Q.

Q ∈ Rn×n, we know that PQ(t) is a polynomial with real coefficients. The roots of such a polynomial

come in conjugate pairs, so the eigenvalues are λ1, λ1, . . . , λk, λk, λ2k+1, . . . , λn, where λ2k+1, . . . , λn ∈ R.

Now, λiλi = |λi|2 = 1 since Q is orthogonal, so 1 = detQ = (λ1λ1) · · · (λkλk)λ2k+1 · · ·λn =

λ2k+1 · · ·λn.

Now, λ2k+1, . . . , λn ∈ {±1} since they are real, so since λ2k+1 · · ·λn = 1, we know that there must

be an even number of −1’s. Hence, since n is odd, we have n− (2k + 1) + 1 = n− 2k + 2 of these λ’s,

which is an odd number; hence Q does indeed have 1 as an eigenvalue. �

(8) Let A,B ∈ Cn×n.

(a) Show that if A (or B) is non-singular, then PAB(t) = PBA(t).

Solution: We claim that AB and BA are similar in this case, from which the claim follows. Indeed,

since A is non-singular, AB = A(BA)A−1. �

(b) Challenge: Show that the same is true if A,B are singular. (Hint: “perturb” A by a small multiple

of the identity)

Solution: In DSW4, there was an example of singular A,B where AB was not similar to BA, so

we will need a different argument here, namely one that uses continuity.

Firstly, for γ ∈ C, consider Aγ = A − γIn. Aγ is simply a polynomial in A, so we know that the

eigenvalues of Aγ are λi − γ where λi is an eigenvalue for A. Since there are only finitely many

eigenvalues, there is some ε > 0 such that for all 0 < |γ| < ε, all eigenvalues of Aγ are non-zero, i.e.

Aγ is non-singular.

Thus, by part (a), we know that PAγB(t) = PBAγ (t) for all 0 < |γ| < ε. Now, PAγB(t) =

det(tIn − (A− γIn)B) = det(tIn −AB + γB) and PBAγ (t) = det(tIn −BA+ γB), so

lim
γ→0

det(tIn −AB + γB) = lim
γ→0

det(tIn −BA+ γB).
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We now claim that limγ→0 det(X + γY ) = detX for any X,Y ∈ Cn×n. To show this, we expand

det(X + γY ) =
∑
σ∈Sn sgnσ

∏n
i=1(Xi,σ(i) + γYi,σ(i)). But now, Xi,σ(i), Yi,σ(i) are just numbers, so

limγ→0(Xi,σ(i) + γYi,σ(i))) = Xi,σ(i), and hence since there are only finitely many permutations in

Sn, limγ→0 det(X + γY ) = detX as needed.

We conclude that

PAB(t) = det(tIn −AB) = lim
γ→0

det(tIn −AB + γB) = lim
γ→0

det(tIn −BA+ γB) = det(tIn −BA) = PBA(t).

�

(9) Suppose that A � 0 and B � 0. Show that if AB = BA, then AB � 0.

Solution: Since A,B are Hermitian and AB = BA, we have (AB)∗ = B∗A∗ = BA = AB, so AB is

Hermitian. We showed in class that the eigenvalues of AB are non-negative, so the two of these together

means that AB � 0. �


