
Matrices and Linear Trans. Discussion Session #6 Aug 8

Justify all answers! I recommend doing these questions out of order and focus first on questions with which

you are less comfortable.

Please let me know if I’ve made any mistakes in my solutions.

(1) This exercise will walk through the last necessary step in our proof of the existence of Jordan canonical

form; namely that the generalized eigenspaces associated with different eigenvalues are linearly indepen-

dent.

Fix A ∈ Cn×n.

(a) Suppose that λ, µ ∈ C, ~v ∈ Eλ(A) and k ∈ Z+; show that (A− µIn)k~v = (λ− µ)k~v.

Solution: We notice that (A−µIn)~v = A~v−µ~v = (λ−µ)~v. Thus, ~v is an eigenvector for (A−µIn)

with eigenvalue (λ−µ). This implies that ~v is an eigenvector for (A−µIn)k with eigenvalue (λ−µ)k

as needed. �

(b) Show that if λ 6= µ, then Ekλ(A) ∩ E`µ(A) = {~0} for any k, ` ∈ Z+.

(Hint: use part (a) by considering (A−λIn)r−1~v where r is the order of ~v as a generalized eigenvector

associated with λ.)

Solution: If k = 0 or ` = 0, then this is trivial, so suppose that k, ` ≥ 1.

Let ~v ∈ Ekλ(A)∩E`µ(A); we wish to show that ~v = ~0. If not, then since ~v ∈ Ekλ(A), let r ≥ 1 be the

order of ~v as a generalized eigenvector associated with λ, so ~v′ = (A−λIn)r−1~v has ~v′ ∈ Eλ(A) and

~v′ 6= ~0. Additionally, since ~v ∈ E`µ(A) and polynomials in A commute, we know that ~v′ ∈ E`µ(A)

still.

Thus, applying part (a), we have ~0 = (A − µIn)`~v′ = (λ − µ)`~v′, so (λ − µ)` = 0 since ~v′ 6= ~0; a

contradiction since λ 6= µ. �

(c) Suppose that ~v1, . . . , ~vm are nonzero generalized eigenvectors for A, each associated with a different

eigenvalue. Show that {~v1, . . . , ~vm} is linearly independent.

(Hint: induction on m using part (b).)

Solution: Base case: m = 1 is trivial.

Induction hypothesis: For some M > 1, if ~v1, . . . , ~vM−1 are nonzero generalized eigenvectors, each

associated with a different eigenvalue, then {~v1, . . . , ~vM−1} is linearly independent.

Induction step: Let ~v1, . . . , ~vM be nonzero generalized eigenvectors where ~vi is associated with λi,

where λ1, . . . , λM are distinct. Suppose that ~vi has order ki as a generalized eigenvector associated

with λi.

Now, consider a linear combination c1~v1 + · · ·+ cM~vM = ~0 and multiply by (A−λMIM )kM , so find

c1(A− λMIM )kM~v1 + c2(A− λMIM )kM~v2 + · · ·+ cM−1(A− λMIM )kM~vM−1 = ~0.

Now, since λi 6= λM for all i ∈ [M − 1], we know that (A− λMIM )kM~vi 6= ~0 for all i ∈ [M − 1] by

part (b) and also that (A − λMIM )kM~vi is still a generalized eigenvector associated with λi since

polynomials in A commute.

Thus, by the induction hypothesis, we see that c1 = · · · = cM−1 = 0, so ~0 = ~0 + · · ·+~0 + cM~vM , so

cM = 0 as well since ~vM 6= ~0. �
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(2) For the following matrices A, find P, J where J is a Jordan form and A = PJP−1.

(a)

[
2 −1

0 2

]
.

Solution: Observe that PA(t) = (t− 2)2. Now,

E2(A) = Nul

[
0 −1

0 0

]
= span{~e1},

and

E2
2(A) = NulO2 = C2.

We can thus pick ~v2 = ~e2, and ~v1 = (A− 2I2)~v2 = −~e1, so with P =
[
~v1 ~v2

]
we have

A = P

[
2 1

0 2

]
P−1.

�

(b)

5 −1 0

1 3 0

0 0 4

.

Solution: Observe that PA(t) = (t− 4)3. Now,

E4(A) = Nul

1 −1 0

1 −1 0

0 0 0

 = span

{
~e3,

1

1

0

},
and

E2
4(A) = NulO3 = C3.

Now, notice that ~v2 = ~e1 is a basis for E2
4(A) relative to E1

4(A), and ~v1 = (A − 4I3) =

1

1

0

.

Finally, with ~v3 = ~e3, {~v2, ~v3} forms a basis for E4(A), so {~v1, ~v2, ~v3} is a basis for C3, so with

P =
[
~v1 ~v2 ~v3

]
, we have

A = P

4 1 0

0 4 0

0 0 4

P−1.
�

(3) Fix A ∈ Cn×n and λ ∈ C. Suppose that ` ∈ Z+ is such that E`−1λ (A) ( E`λ(A) = E`+1
λ (A), i.e. the chain

of generalized λ-eigenspaces stabilizes at order `. Prove that if k ≥ `, then

Nul
(
(A− λIn)k

)
+ Col

(
(A− λIn)k

)
= Cn.

(Hint: Show that the intersection of these spaces is {~0} and apply rank–nullity.)

Solution: By the rank–nulity theorem, we know that the dimensions of these spaces add to n, so it

suffices to show that Nul
(
(A− λIn)k

)
∩ Col

(
(A− λIn)k

)
= {~0}.

Indeed, suppose that ~v ∈ Nul
(
(A− λIn)k

)
∩ Col

(
(A− λIn)k

)
, so (A− λIn)k~v = ~0 and there is some

~u ∈ Cn such that (A−λIn)k~u = ~v. Thus, (A−λIn)2k~u = (A−λIn)k~v = ~0, so ~u ∈ E2k
λ (A) = Ekλ(A), since
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the chain stabilizes at order ` ≤ k. But, then, since ~u ∈ Ekλ(A), we in fact have ~v = (A− λIn)k~u = ~0, as

needed. �

(4) Show that if A ∈ Cn×n is diagonalizable, then NulA ∩ ColA = {~0}.

Solution: Since A is diagonalizable, we know that E1
0(A) = E2

0(A); i.e. this chain stabilizes at order

either 0 or 1 (depending on whether or not 0 is an eigenvalue for A). Therefore, this follows from work

done above.

To reiterate the argument here in a simpler case: Suppose that ~v ∈ NulA ∩ ColA, then A~v = ~0 and

there is some ~u ∈ Cn with A~u = ~v. Thus, A2~u = A~v = ~0, so ~u ∈ E2
0(A) = E1

0(A), so ~v = A~u = ~0. �


